Skip to main content
Log in

Development of a refinement criterion for adaptive mesh refinement in steam-assisted gravity drainage simulation

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Steam-assisted gravity drainage (SAGD) is an enhanced oil recovery process for heavy oils and bitumens. Numerical simulations of this thermal process allow us to estimate the retrievable volume of oil and to evaluate the benefits of the project. As there exists a thin flow interface (compared to the reservoir dimensions), SAGD simulations are sensitive to the grid size. Thus, to obtain precise forecasts of oil production, very small-sized cells have to be used, which leads to prohibitive CPU times. To reduce these computation times, one can use an adaptive mesh refinement technique, which will only refine the grid in the interface area and use coarser cells outside. To this end, in this work, we introduce new refinement criteria, which are based on the work achieved in Kröner and Ohlberger (Math Comput 69(229):25–39, 2000) on a posteriori error estimators for finite volume schemes for hyperbolic equations. Through numerical experiments, we show that they enable us to decrease in a significant way the number of cells (and then CPU times) while maintaining a good accuracy in the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shocks hydrodynamics. J. Comput. Phys. 82, 67–84 (1989)

    Article  Google Scholar 

  2. Chainais-Hillairet, C.: Schémas volumes finis pour des problèmes hyperboliques: convergence et estimation d’erreur. Ph.D. thesis, Université de Paris VI (1998)

  3. Chainais-Hillairet, C.: Finite volume schemes for nonlinear hyperbolic equations. Convergence towards the entropy solution and error estimate. M2AN 33(1), 129–156 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chainais-Hillairet, C., Champier, S.: Finite volume schemes for nonhomogeneous scalar conservation laws: error estimate. Numer. Math. 88(4), 607–639 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Christensen, J.R., Darche, G., Déchelette, B., Ma, H., Sammon, P.H.: Applications of dynamic gridding to thermal simulations. SPE86969 (2004)

  6. Cockburn, B., Coquel, F., Le Floch, P.: An error estimate for finite volume methods for multidimensional conservation laws. Math. Comput. 63(207), 77–103 (1994)

    Article  MATH  Google Scholar 

  7. Cockburn, B., Coquel, F., LeFloch, P.G.: Convergence of the finite volume method for multidimensional conservation laws. SIAM J. Num. Anal. 32(3), 687–705 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cockburn, B., Gau, H.: A posteriori error estimates for general numerical methods for scalar conservation laws. Comput. Appl. Math. 14, 37–47 (1995)

    MATH  MathSciNet  Google Scholar 

  9. Eymard, R., Gallouët, T., Ghilani, M., Herbin, R.: Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18(4), 563–594 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eymard, R., Gallouet, T., Herbin, R.: Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation. Chin. Ann. Math. 16B(1), 1–14 (1995)

    MathSciNet  Google Scholar 

  11. Eymard, R., Gallouët, T., Herbin, R.: Convergence of a finite volume scheme for a nonlinear hyperbolic equation. In: Proceedings of the Third Colloquium on Numerical Analysis, pp. 61–70 (1995)

  12. Kröner, D., Ohlberger, M.: A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multidimensions. Math. Comput. 69(229), 25–39 (2000)

    MATH  Google Scholar 

  13. Kruzhkov, S.N.: First order quasilinear equations in several independent variables. Math. USSR Sbornik 10, 217–243 (1970)

    Article  MATH  Google Scholar 

  14. Lacroix, S., Lemonnier, P., Renard, G., Taieb, C.: Enhanced numerical simulations of IOR processes through dynamic sub-gridding. Technical report, Canadian International Petroleum Conference (2003)

  15. Vila, J.P.: Convergence and error estimates in finite-volume schemes for general multidimensional conservation laws. M2AN 28, 267–285 (1994)

    MATH  MathSciNet  Google Scholar 

  16. Wang, X.H., Quintard, M., Darche, G.: Adaptive mesh refinement for one dimensional three-phase flow with phase change in porous media. Numer. Heat Transf. 50, 231–268 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnolia Mamaghani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamaghani, M., Enchéry, G. & Chainais-Hillairet, C. Development of a refinement criterion for adaptive mesh refinement in steam-assisted gravity drainage simulation. Comput Geosci 15, 17–34 (2011). https://doi.org/10.1007/s10596-010-9192-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-010-9192-4

Keywords

Navigation