Skip to main content

Advertisement

Log in

Conservation genetic analysis of a Central-European range-margin population of the yellow-bellied toad (Bombina v. variegata)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the genetic structure and diversity of populations of the yellow-bellied toad in Lower Saxony, Germany. These populations provide a good example of a fragmented distribution of amphibian pioneer species on the outer rim of their occurrence. In total, 150 individuals from 11 sites were genotyped using ten highly polymorphic microsatellites. The genetic diversity, as measured by allelic richness and heterozygosity, was lower than that of other European amphibian populations; the individuals could be assigned to five genetic clusters. The average genetic differentiation between populations was very high (mean FST = 0.27) and no migration was detected between the two major populations, which were about 50 km apart. Nonetheless, natural migration as well as translocations between some subpopulations could be detected. In one population, which was introduced in the 1970s, we were able to verify the potential source population of the introduced toads. The results are discussed in light of conservation management strategies applied to this highly endangered species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from NLWKN/nature conservation/R. Podloucky, P. G. Schader (2007)

Fig. 2

Similar content being viewed by others

References

  • Altwegg R, Reyer HU (2003) Patterns of natural selection on size at metamorphosis in water frogs. Evolution 57:872–882

    Article  PubMed  Google Scholar 

  • Andersen LW, Fog K, Damgaard C (2004) Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea). Proc Biol Sci 271:1293–1302. https://doi.org/10.1098/rspb.2004.2720

    Article  PubMed  PubMed Central  Google Scholar 

  • Arens P, Bugter R, van’t Westende W, Zollinger R, Stronks J, Vos CC, Smulders MJM (2006) Microsatellite variation and population structure of a recovering Tree frog (Hyla arborea L.) metapopulation. Conserv Genet 7:825–835. https://doi.org/10.1007/s10592-005-9112-7

    Article  CAS  Google Scholar 

  • Barandun J, Reyer HU (1997) Reproductive ecology of Bombina variegata: development of eggs and larvae. J Herpetol 31:107–110. https://doi.org/10.2307/1565337

    Article  Google Scholar 

  • Beebee TJC (2005) Conservation genetics of amphibians. Heredity 95:423–427. https://doi.org/10.1038/sj.hdy.6800736

    Article  CAS  PubMed  Google Scholar 

  • Belkir K, Borsa P, Chickhi L, Raufaste N, Bonhomme F (1996–2002) GENETIX 4.04 logici el sous windows TM, pour la Génétique des Populations. 2000. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier

  • Beshkov VA, Jameson DL (1980) Movement and abundance of the yellow-bellied toad Bombina-variegata. Herpetologica 36:365–370

    Google Scholar 

  • Beutler A, Geiger A, Kornacker PM, Kühnel K-D, Laufer H, Podloucky R, Boye P, Dietrich E (1998) Rote Liste Der Kriechtiere (Reptilia) Und Rote Liste Der Lurche (Amphibia) Bearbeitungsstand: 1997. In: Binot M, Bless R, Boye P, Gruttke H, Pretscher P: Rote Liste Gefährdeter Tiere Deutschlands. – Bonn (Bundesamt Für Naturschutz). – Schr Landsch Nat 55:48–52

  • Bouzat JL, Johnson JA, Toepfer JE, Simpson SA, Esker TL, Westemeier RL (2009) Beyond the beneficial effects of translocations as an effective tool for the genetic restoration of isolated populations. Conserv Genet 10:191–201. https://doi.org/10.1007/s10592-008-9547-8

    Article  Google Scholar 

  • Broquet T, Berset-Braendli L, Emaresi G, Fumagalli L (2007) Buccal swabs allow efficient and reliable microsatellite genotyping in amphibians. Conserv Genet 8:509–511. https://doi.org/10.1007/s10592-006-9180-3

    Article  CAS  Google Scholar 

  • Brussard PF (1984) Geographic patterns and environmental gradients: the central-marginal model in Drosophila revisited. Annu Rev Ecol Syst 15:25–64. https://doi.org/10.1146/annurev.es.15.110184.000325

    Article  Google Scholar 

  • Buschmann H, Scheel B (2009) Das Artenschutzprojekt Gelbbauchunke (Bombina variegata) im Landkreis Schaumburg. Niedersachs Rana 10:8–17

    Google Scholar 

  • Buschmann H, Scheel B, Brandt T (2006) Amphibien und Reptilien im Schaumburger Land und am Steinhuder Meer. Natur und Text, Rangsdorf

    Google Scholar 

  • Cassel A, Tammaru T (2003) Allozyme variability in central, peripheral and isolated populations of the scarce heath (Coenonympha hero: Lepidoptera, Nymphalidae); implications for conservation. Conserv Genet 4:83–93. https://doi.org/10.1023/A:1021884832122

    Article  CAS  Google Scholar 

  • Cayuela H, Besnard A, Joly P (2013) Multi-event models reveal the absence of interaction between an invasive frog and a native endangered amphibian. Biol Invasions 15:2001–2012. https://doi.org/10.1007/s10530-013-0427-x

    Article  Google Scholar 

  • Cayuela H, Arsovski D, Thirion J-M, Bonnaire E (2016a) Contrasting patterns of environmental fluctuation contribute to divergent life histories among amphibian populations. Ecology 97(4):980–991. https://doi.org/10.1890/15-0693.1

    Article  PubMed  Google Scholar 

  • Cayuela H, Boualit L, Arsovski D, Bonnaire E, Pichenot J, Bellec A, Miaud C, Léna J-P, Joly P, Besnard A (2016b) Does habitat unpredictability promote the evolution of a colonizer syndrome in amphibian metapopulations? Ecology 97:2658–2670

    Article  PubMed  Google Scholar 

  • Cayuela H, Léna J-P, Lengagne T, Kaufmann B, Mondy N, Konecny L, Dumet A, Vienney A, Joly P (2017) Relatedness predicts male mating success in a pond-breeding amphibian. Anim Behav. https://doi.org/10.1002/ecy.1489

    Article  Google Scholar 

  • Cornetti L, Benazzo A, Hoban S, Vernesi C, Bertorelle G (2016) Ancient, but not recent, population declines have had a genetic impact on alpine yellow-bellied toad populations, suggesting potential for complete recovery. Conserv Genet 17:727–743. https://doi.org/10.1007/s10592-016-0818-5

    Article  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240. https://doi.org/10.1016/j.biocon.2005.09.031

    Article  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolgener N, Schröder C, Schneeweiss N, Tiedemann R (2012) Genetic population structure of the Fire-bellied toad Bombina bombina in an area of high population density: implications for conservation. Hydrobiologia 689:111–120. https://doi.org/10.1007/s10750-012-1016-1

    Article  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188. https://doi.org/10.1111/j.1365-294X.2007.03659.x

    Article  CAS  PubMed  Google Scholar 

  • Eckstein RL, O’Neill RA, Danihelka J, Otte A, Kohler W (2006) Genetic structure among and within peripheral and central populations of three endangered floodplain violets. Mol Ecol 15:2367–2379. https://doi.org/10.1111/j.1365-294X.2006.02944.x

    Article  CAS  PubMed  Google Scholar 

  • Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475. https://doi.org/10.1111/j.1365-294X.2006.03148.x

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    Article  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2006) An integrated software package for population genetics data analysis. Computational and molecular population genetics lab (CMPG). Institute of Zoology, University of Berne

  • Frankham R, Ballou JD, Briscoe DA (2004) A primer of conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Garcia-Ramos G, Kirkpatrick M (1997) Genetic models of adaptation and gene flow in peripheral populations. Evolution 51:21–28. https://doi.org/10.1111/j.1558-5646.1997.tb02384.x

    Article  PubMed  Google Scholar 

  • Garner TWJ, Pearman PB, Angelone S (2004) Genetic diversity across a vertebrate species’ range: a test of the central-peripheral hypothesis. Mol Ecol 13:1047–1053. https://doi.org/10.1111/j.1365-294X.2004.02119.x

    Article  CAS  PubMed  Google Scholar 

  • Garner TW, Rowcliffe JM, Fisher MC (2011) Climate change, chytridiomycosis or condition: an experimental test of amphibian survival. Glob Change Biol 17:667–675

    Article  Google Scholar 

  • Gasc JP, Cabela A, Crnobrnja-Isailovic J, Dolmen D, Grossenbacher K, Haffner P, Lescure J, Martens H, Martínez Rica JP, Maurin H, Oliveira ME, Sofianidou TS, Veith M, Zuiderwijk A (1997) Atlas of amphibians and reptiles in Europe, Collection Patrimoines Naturels, 29, Societas Europaea Herpetologica. Muséum National d’Histoire Naturelle & Service du Patrimoine Naturel, Paris

    Google Scholar 

  • Goldberg TL, Grant EC, Inendino KR, Kassler TW, Claussen JE, Philipp DP (2005) Increased infectious disease susceptibility resulting from outbreeding depression. Conserv Biol 19:455–462. https://doi.org/10.1111/j.1523-1739.2005.00091.x

    Article  Google Scholar 

  • Gollmann B, Gollmann G (2002) Die Gelbbauchunke: Von der Suhle zur Radspur. Beiheft der Zeitschrift f. Feldherpetologie 4. Laurenti Verlag, Bielefeld

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3)

  • Grasso AN, Goldberg V, Navajas EA, Iriarte W, Gimeno D, Aguilar I, Medrano JF, Rincón G, Ciappesoni G (2014) Genomic variation and population structure detected by single nucleotide polymorphism arrays in Corriedale, Merino and Creole sheep. Genet Mol Biol 37:389–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372. https://doi.org/10.2307/2532296

    Article  CAS  PubMed  Google Scholar 

  • Habel JC, Zachos FE (2012) Habitat fragmentation versus fragmented habitats. Biodivers Conserv 21:2987–2990. https://doi.org/10.1007/s10531-012-0349-4

    Article  Google Scholar 

  • Hartel T, von Wehrden H (2013) Farmed areas predict the distribution of amphibian ponds in a traditional rural landscape. PLoS ONE 8(5). https://doi.org/10.1371/journal.pone.0063649

  • Hartl DL, Clark AG (2007) Principles of population genetics, 4th edn. Sinauer Associates, Sunderland (MA)

    Google Scholar 

  • Hauswaldt JS, Schroder C, Tiedemann R (2007) Nine new tetranucleotide microsatellite markers for the fire-bellied toad (Bombina variegata). Mol Ecol Notes 7:49–52. https://doi.org/10.1111/j.1471-8286.2006.01516.x

    Article  CAS  Google Scholar 

  • Jacob A, Scheel B, Buschmann H (2009) Raumnutzung in einer Metapopulation der Gelbbauchunke (Bombina variegata) an ihrer nördlichen Verbreitungsgrenze. Z Feldherpetol 16:85–103

    Google Scholar 

  • Joger U, Schmidt D (1996) Verbreitung, Bestandsentwicklung und Schutz der Gelbbauchunke (Bombina v. variegata) in Hessen. Naturschutzreport 11:106–113

    Google Scholar 

  • Kekkonen J, Wikstrom M, Brommer JE (2012) Heterozygosity in an isolated population of a large mammal founded by four individuals is predicted by an individual-based genetic model. PLoS ONE 7(9):e43482. https://doi.org/10.1371/journal.pone.0043482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Krug A, Pröhl H (2013) Population genetics in a fragmented population of the European tree frog (Hyla arborea). Amphib Reptil 34:95–107. https://doi.org/10.1163/15685381-00002875

    Article  Google Scholar 

  • Kuhn J, Gutser D (1998) Wie alt werden Lurche? In: Hofrichter R (ed) Amphibien. Naturbuch Verlag, Augsburg, pp 191–193

    Google Scholar 

  • Kühnel K-D, Geiger A, Laufer H, Podloucky R, Schlüpmann M (2009) Rote Liste und Gesamtartenliste der Lurche (Amphibia) und Kriechtiere (Reptilia) Deutschlands [Stand Dezember 2008]. In: Haupt HLG, Gruttke H, Binot-Hafke M, Otto C, Pauly A (eds) Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Band 1: Wirbeltiere. Naturschutz und biologische Vielfalt vol 70(1). Bundesamt für Naturschutz

  • Lambeck RJ (1997) Focal species: a multi-species umbrella for nature conservation. Conserv Biol 11:849–856. https://doi.org/10.1046/j.1523-1739.1997.96319.x

    Article  Google Scholar 

  • Lesica P, Allendorf FW (1995) When are peripheral-populations valuable for conservation. Conserv Biol 9:753–760. https://doi.org/10.1046/j.1523-1739.1995.09040753.x

    Article  Google Scholar 

  • Lippe C, Dumont P, Bernatchez L (2006) High genetic diversity and no inbreeding in the endangered copper redhorse, Moxostoma hubbsi (Catostomidae, Pisces): the positive sides of a long generation time. Mol Ecol 15:1769–1780. https://doi.org/10.1111/j.1365-294X.2006.02902.x

    Article  CAS  PubMed  Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051. https://doi.org/10.1111/j.1365-294X.2010.04688.x

    Article  PubMed  Google Scholar 

  • Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237. https://doi.org/10.1046/j.1523-1739.1998.96388.x

    Article  Google Scholar 

  • Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol Ecol 7:963–974. https://doi.org/10.1046/j.1365-294x.1998.00414.x

    Article  CAS  PubMed  Google Scholar 

  • Marchand M (1993) Untersuchungen zur Pionierbesiedlung terrestrischer und limnischer Habitate eines Bodenabbaugebietes im südlichen Wesertal mit besonderer Berücksichtigung der Biologie und Ökologie der Gelbbauchunke, Bombina v. variegata Linnaeus, 1758. Cuvillier, Göttingen

    Google Scholar 

  • Medina I, Cooke GM, Ord TJ (2018) Walk, swim or fly? Locomotor mode predicts genetic differentiation in vertebrates. Ecology letters 21:638–645

    Article  PubMed  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Molecular ecology resources 11:5–18

    Article  PubMed  Google Scholar 

  • Miesler M, Gollmann B (2000) Populationsstruktur, Wachstum und Fortpflanzung der Gelbbauchunke, Bombina variegata (Linnaeus, 1758): Ergebnisse aus einer Ein-Jahres-Studie im Lainzer Tiergarten (Wien, Österreich) Herpetozoa 13:45–54

    Google Scholar 

  • Munwes I, Geffen E, Roll U, Friedmann A, Daya A, Tikochinski Y, Gafny S (2010) The change in genetic diversity down the core-edge gradient in the eastern spadefoot toad (Pelobates syriacus). Mol Ecol 19:2675–2689. https://doi.org/10.1111/j.1365-294X.2010.04712.x

    Article  CAS  PubMed  Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite Analysis of Population-Structure in Canadian Polar Bears. Mol Ecol 4:347–354. https://doi.org/10.1111/j.1365-294X.1995.tb00227.x

    Article  CAS  PubMed  Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65. https://doi.org/10.1046/j.1365-294X.2004.02008.x

    Article  CAS  PubMed  Google Scholar 

  • Peterman WE, Feist SM, Semlitsch RD, Eggert LS (2013) Conservation and management of peripheral populations: Spatial and temporal influences on the genetic structure of wood frog (Rana sylvatica) populations. Biol Conserv 158:351–358. https://doi.org/10.1016/j.biocon.2012.07.028

    Article  Google Scholar 

  • Pidancier N, Miquel C, Miaud C (2003) Buccal swabs as a non-destructive tissue sampling method for DNA analysis in amphibians. Herpetol J 13:175–178

    Google Scholar 

  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: A software for genetic assignment and first-generation migrant detection. J Hered 95:536–539. https://doi.org/10.1093/jhered/esh074

    Article  CAS  PubMed  Google Scholar 

  • Plytycz B, Bigaj J (1993) Studies on the growth and longevity of the yellow-bellied toad, Bombina variegata, in natural environments. Amphibia-Reptilia 14:35–44

    Article  Google Scholar 

  • Podloucky R (1996) Niedersächsisches Artenschutzprogramm “Gelbbauchunke”: Ein Überblick über historische Verbreitung, Ist-Zustand und Zukunft. Naturschutzreport 11:101–106

  • Poschadel JR, Möller D (2004) A versatile field method for tissue sampling on small reptiles and amphibians, applied to pond turtles, newts, frogs and toads. Conserv Genet 5:865–867. https://doi.org/10.1007/s10592-004-1974-6

    Article  CAS  Google Scholar 

  • Pritchard JK, Wen X, Falush D (2003) Documentation for structure software: version 2

  • Pritchard JK, Wen X, Falush D (2007) Documentation for structure software: Version 2.2

  • Schellenberg M (2016) Populationsstruktur, Wanderverhalten und Habitatnutzung der Gelbbauchunke (Bombina variegata) im Nationalpark Hainich/Thüringen. Master thesis, Friedrich Schiller University Jena

  • Schlegel D (2000) Nördlichstes Vorkommen der Gelbbauchunke (Bombina v. variegata) festgestellt? Beitr Nat Niedersachs 53:191–193

    Google Scholar 

  • Schmidt BR, Hödl W, Schaub M (2012) From metamorphosis to maturity in complex life cycles: equal performance of different juvenile life history pathways. Ecology 93:657–667

    Article  PubMed  Google Scholar 

  • Schröder C, Pokorny I, Dolgener N, Herden C, Drews H, Tiedemann R (2012) Allochthonous individuals in managed populations of the fire-bellied toad Bombina bombina: genetic detection and conservation implications. Limnologica 42:291–298. https://doi.org/10.1016/j.limno.2012.08.008

    Article  Google Scholar 

  • Seppä P, Laurila A (1999) Genetic structure of island populations of the anurans Rana temporaria and Bufo bufo. Heredity 82:309–317

    Article  PubMed  Google Scholar 

  • Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution 39:53–65. https://doi.org/10.2307/2408516

    Article  PubMed  Google Scholar 

  • Smirina EM (1994) Age determination and longevity in amphibians. Gerontology 40:133–146

    Article  CAS  PubMed  Google Scholar 

  • Storfer A (2003) Amphibian declines: future directions. Divers Distrib 9:151–163. https://doi.org/10.1046/j.1472-4642.2003.00014.x

    Article  Google Scholar 

  • Stuckas H, Tiedemann R (2006) Eight new microsatellite loci for the critically endangered fire-bellied toad Bombina bombina and their cross-species applicability among anurans. Mol Ecol Notes 6:150–152. https://doi.org/10.1111/j.1471-8286.2005.01171.x

    Article  CAS  Google Scholar 

  • Tournier E (2017) Endangered species conservation in peri-urban habitats—study of yellow-bellied toads populations (Bombina variegata) in Geneva (Switzerland)—ecological, ethological and genetic approaches. Universita degli studi di Padova, Padova

    Google Scholar 

  • Weihmann F (2008) Naturschutzgenetische Untersuchungen von Populationen der Gelbbauchunke (Bombina v. variegata) im südlichen Niedersachsen. Diploma thesis, University of Kassel

  • Weihmann F, Podloucky R, Hauswaldt S, Pröhl H (2009) Naturschutzgenetische Untersuchungen von Populationen der Gelbbauchunke (Bombina v. variegata) im südlichen Niedersachsen. Z Feldherpetol 16:31–48

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. doi:https://doi.org/10.2307/2408641

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

For their help and assistance during the preparation of the manuscript as well as valuable suggestions we would like to thank R. Podloucky and the Lower Saxony Water Management, Coastal Defence and Nature Conservation Agency (NLWKN), the German Environmental Conservation Agency (NABU) and K. Knorr as well as H. Buschmann, H. Pröhl, S. Hauswaldt, S. Weiss, three anonymous reviewers and our editor S.C. Lougheed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Weihmann.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 6 and 7.

Table 6 Allelic richness per locus and population
Table 7 Genetic diversity per locus and population

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weihmann, F., Weihmann, S. & Weihmann, T. Conservation genetic analysis of a Central-European range-margin population of the yellow-bellied toad (Bombina v. variegata). Conserv Genet 20, 557–569 (2019). https://doi.org/10.1007/s10592-019-01156-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-019-01156-6

Keywords

Navigation