Skip to main content

Advertisement

Log in

Anthropogenic hive movements are changing the genetic structure of a stingless bee (Tetragonula carbonaria) population along the east coast of Australia

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Across the world, the keeping of stingless bees is increasingly popular, providing commercial pollination, high-value honey and a rewarding pass time. The popularity of stingless beekeeping has resulted in large-scale anthropogenic movements of nests, sometimes from outside their native range. Colony movement has the potential to impact local populations via transfer of parasites and pathogens and gene flow across unnaturally large geographic scales. Tetragonula carbonaria is the most widespread and commonly kept stingless bee species in Australia. Concerns have been raised that large-scale artificial propagation of T. carbonaria colonies by Sydney beekeepers, from a small number of colonies that originated in south-east Queensland, may have two consequences. First, the managed population may be becoming increasingly inbred. Second, the wild population may be experiencing significant introgression of south-east Queensland genotypes, potentially diluting local adaptations to the Sydney environment and resulting in the loss of local alleles. Here we show, based on microsatellite and mitochondrial markers, that both the managed and wild Sydney populations are significantly different from the south-east Queensland population. Nonetheless there is evidence that introgression of south-east Queensland alleles is impacting the genetic structure of both wild and managed Sydney populations. The two Sydney populations are indistinguishable, suggesting two-way gene flow in Sydney consistent with expectations of gene flow via male dispersal. All populations have low inbreeding coefficients, suggesting that they are genetically healthy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akerman K (1979) Honey in the life of the aboriginals of the Kimberleys. Oceania 49:169–178

    Article  Google Scholar 

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alves DA, Imperatriz-Fonseca VL, Francoy TM, Santos-Filho PS, Billen J, Wenseleers T (2011) Successful maintenance of a stingless bee population despite a severe genetic bottleneck. Conserv Genet 12:647–658

    Article  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  PubMed  CAS  Google Scholar 

  • Brito R, Arias M (2010) Genetic structure of Partamona helleri (Apidae, Meliponini) from Neotropical Atlantic rainforest. Insectes Soc 57:413–419

    Article  Google Scholar 

  • Brito RM, Francisco FO, Domingues-Yamada AMT, Gonçalves PHP, Pioker FC, Soares AEE, Arias MC (2009) Characterization of microsatellite loci of Tetragonisca angustula (Hymenoptera, Apidae, Meliponini). Conserv Genet Resour 1:183–187

    Article  Google Scholar 

  • Brito RM, Francisco FO, Ho SYW, Oldroyd BP (2014) Genetic architecture of the Tetragonula carbonaria species complex of Australian stingless bees (Hymenoptera: Apidae: Meliponini). Biol J Lin Soc 113:149–161

    Article  Google Scholar 

  • Byatt MA, Chapman NC, Latty T, Oldroyd BP (2015) The genetic consequences of anthropogenic movement of bees. Insectes Soc 63:15–24

    Article  Google Scholar 

  • Cameron E, Franck P, Oldroyd BP (2004) Genetic structure of nest aggregations and drone congregations of the southeast Asian stingless bee Trigona collina. Mol Ecol 13:2357–2364

    Article  PubMed  CAS  Google Scholar 

  • Carvalho-Zilse G, Costa-Pinto M, Nunes-Silva C, Kerr W (2009) Does beekeeping reduce genetic variability in Melipona scutellaris (Apidae, Meliponini)? Genet Mol Res 8:758–765

    Article  PubMed  CAS  Google Scholar 

  • Cortopassi-Laurino M, Imperatriz-Fonseca V, Roubik DW, Dollin A, Heard T, Aguilar I, Venturieri GC, Eardley C, Nogueira-Neto P (2006) Global meliponiculture: challenges and opportunities. Apidologie 37:275–292

    Article  Google Scholar 

  • Crane E (1992) The past and present status of beekeeping with stingless bees. Bee World 73:29–42

    Article  Google Scholar 

  • de la Rúa P, Jaffé R, Dall’ Olio R, Muñoz I, Serrana J (2009) Biodiversity, conservation and current threats to European honeybees. Apidologie 40:263–284

    Article  Google Scholar 

  • Dollin AE, Dollin LJ, Sakagami SF (1997) Australian stingless bees of the genus Trigona (Hymenoptera: Apidae). Invertebr Syst 11:861–896

    Article  Google Scholar 

  • dos Santos CF, Francisco FO, Imperatriz-Fonseca VL, Arias MC (2016a) Eusocial bee male aggregations: spatially and temporally separated but genetically homogenous. Entomol Exp Appl 158:320–326

    Article  Google Scholar 

  • dos Santos CF, Imperatriz-Fonseca VL, Arias MC (2016b) Relatedness and dispersal distance of eusocial bee males on mating swarms. Entomol Sci 19:245–254

    Article  Google Scholar 

  • Drumond PM, Oldroyd BP, Dollin AE, Dollin LJ (1999) Oviposition behaviour of two Australian stingless bees, Austroplebia symei Rayment and Austroplebeia australis Friese (Hymenoptera: Apidae: Meliponini). Aust J Entomol 38:234–241

    Article  Google Scholar 

  • Engels W, Imperatriz-Fonseca VL (1990) Caste development, reproductive strategies and control of fertility in honeybees and stingless bees. In: Engles W (ed) Social insects: an evolutionary approach to castes and reproduction. Springer, Berlin, pp 166–230 p.^

    Chapter  Google Scholar 

  • Francisco FO, Santiago LR, Arias MC (2013) Molecular genetic diversity in populations of the stingless bee Plebeia remota: a case study. Genet Mol Biol 36:118–123

    Article  Google Scholar 

  • Francisco FO, Santiago LR, Brito RM, Oldroyd BP, Arias MC (2014) Hybridization and asymmetric introgression between Tetragonisca angustula and Tetragonisca fiebrigi. Apidologie 45:1–9

    Article  Google Scholar 

  • Franck P, Cameron E, Good G, Rasplus JY, Oldroyd BP (2004) Nest architecture and genetic differentiation in a species complex of Australian stingless bees. Mol Ecol 13:2317–2331

    Article  PubMed  CAS  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gloag R, Heard TA, Beekman M, Oldroyd BP (2008) Nest defence in a stingless bee: what causes fighting swarms in Trigona carbonaria (Hymenoptera, Meliponini)? Insectes Soc 55(4):387–391

    Article  Google Scholar 

  • Goka K, Okabe K, Yondea M (2006) Worldwide migration of parasitic mites as a result of bumblebee commercialization. Popul Ecol 48:285–291

    Article  Google Scholar 

  • Green CL, Franck P, Oldroyd BP (2001) Characterization of microsatellite loci for Trigona carbonaria, a stingless bee endemic to Australia. Mol Ecol 13:2317–2331

    Google Scholar 

  • Greenleaf S, Williams N, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596

    Article  PubMed  Google Scholar 

  • Halcroft MT, Spooner-Hart R, Haigh A, Heard M, Dollin TA A (2013) The Australian stingless bee industry: a follow-up survey, one decade on. J Apic Res 52:1–7

    Article  Google Scholar 

  • Harpur BA, Minaei S, Kent CF, Zayed A (2012) Management increases genetic diversity of honey bees via admixture. Mol Ecol 21(18):4414–4421

    Article  PubMed  Google Scholar 

  • Harpur BA, Kent CF, Molodtsova D, Lebon JMD, Alqarni AS, Owayss AA, Zayed A (2014) Population genomics of the honey bee reveals strong signatures of positive selection on worker traits. Proc Natl Acad Sci USA 11:2614–2619

    Article  CAS  Google Scholar 

  • Heard T (1988) Propagation of hives of Trigona carbonaria Smith (Hymenoptera: Apidae). Aust J Entomol 27:303–304

    Article  Google Scholar 

  • Heard T (1994) The role of stingless bees in crop pollination. Annu Rev Entomol 44:183–206

    Article  Google Scholar 

  • Heard T (2016) The Australian Native Bee Book. Sugarbag Bees, West End, QLD

    Google Scholar 

  • Heard T, Dollin AE (2000) Stingless bee keeping in Australia: snapshot of an infant industry. Bee World 81:116–125

    Article  Google Scholar 

  • Inoue T, Sakagami SF, Salmah S, Yamane S (1984) The process of colony multiplication in the Sumatran stingless bee Tripona (Tetragonula) laeviceps. Biotropica 16:100–111

    Article  Google Scholar 

  • Jaffé R, Castilla A, Pope N, Imperatriz-Fonseca VL, Metzger JP, Arias MC, Jha S (2016a) Landscape genetics of a tropical rescue pollinator. Conserv Genet 17:267–278

    Article  Google Scholar 

  • Jaffé R, Pope N, Acosta AL, Alves DA, Arias MC, de la Rúa P, Francisco FO, Giannini TC, González-Chaves A, Imperatriz-Fonseca VL, Tavares MG, Jha S, Carvalheiro LG (2016b) Beekeeping practices and geographic distance, not land use, drive gene flow across tropical bees. Mol Ecol 25:5345–5358

    Article  PubMed  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  PubMed  CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structure populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalinowski S, Taper M (2006) Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv Genet 7:991–995

    Article  CAS  Google Scholar 

  • Koffler S, Kleinert P, de Matos A, Rodolfo J (2017) Quantitative conservation genetics of wild and managed bees. Conserv Genet 18:689–700

    Article  CAS  Google Scholar 

  • Kraus FB, Weinhold S, Moritz RFA (2008) Genetic structure of drone congregations of the stingless bee Scaptotrigona mexicana. Insectes Soc 55:22–27

    Article  Google Scholar 

  • Landaverde-González P, Enríquez E, Ariza MA, Murray T, Paxton RJ, Husemann M (2017) Fragmentation in the clouds? The population genetics of the native bee Partamona bilineata (Hymenoptera: Apidae: Meliponini) in the cloud forests of Guatemala. Conserv Genet 18:631–643

    Article  Google Scholar 

  • Lozier JD, Zayed A (2017) Bee conservation in the age of genomics. Conserv Genet 18:713–729

    Article  Google Scholar 

  • Meixner MD, Kryger P, Costa C (2015) Effects of genotype, environment and their interaction on honey bee health in Europe. Curr Opin Insect Sci 10:177–184

    Article  PubMed  Google Scholar 

  • Michener CD (1974) The social behavior of the bees: a comparative study. Harvard University Press, Harvard, MA

    Google Scholar 

  • Mueller MY, Moritz RF, Kraus FB (2012) Outbreeding and lack of temporal genetic structure in a drone congregation of the neotropical stingless bee Scaptotrigona mexicana. Ecol Evol 2:1304–1311

    Article  PubMed  PubMed Central  Google Scholar 

  • Muñoz I, Cepero A, Pinto MA, Martin-Hernandez R, Higes M, de la Rúa P (2014) Presence of Nosema ceranae associated with honeybee queen introduction. Infect Genet Evol 23:161–168

    Article  PubMed  Google Scholar 

  • Oldroyd BP, Nanork P (2009) Conservation of Asian honey bees. Apidologie 40:296–312

    Article  Google Scholar 

  • Paxton R (2000) Genetic structure of colonies and a male aggregation in the stingless bee Scaptotrigona postica, as revealed by microsatellite analysis. Insectes Soc 47:63–69

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Quezada-Euán JG, May-Itza WD, Rincon P, de la Rúa P, Paxton RJ (2012) Genetic and phenotypic differentiation in endemic Scaptotrigona hellwegeri (Apidae: Meliponini): implications for the conservation of stingless bee populations in contrasting environments. Insect Conserv Divers 5:433–443

    Article  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rasmussen C, Cameron SA (2010) Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biol J Lin Soc 99:206–232

    Article  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Santiago LR, Francisco FO, Jaffé R, Arias MC (2016) Genetic variability in captive populations of the stingless bee Tetragonisca angustula. Genetica 144:397–405

    Article  PubMed  Google Scholar 

  • Schwarz HF (1948) Stingless bees (Meliponidae) of the Western hemisphere. Bull Am Mus Nat Hist 90:1–87

    Google Scholar 

  • Shanks JL, Haigh A, Riegler M, Spooner-Hart M RN (2017) First confirmed report of a bacterial brood disease in stingless bees. J Invertebr Pathol 144:7–10

    Article  PubMed  Google Scholar 

  • Simon C, Frati F, Bechenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 8:103–106

    Google Scholar 

  • Smith JP, Heard TA, Beekman M, Gloag R (2017) Flight range of the Australian stingless bee Tetragonula carbonaria (Hymenoptera: Apidae). Austral Entomol 56:50–53

    Article  Google Scholar 

  • Tavares MG, Almeida BS, Passamani PZ, Paiva SR, Resend HC, Campos LAO, Alves RMO, Waldschmidt AM (2013a) Genetic variability and population structure in Melipona scutellaris (Hymenoptera: Apidae) from Bahia, Brazil, based on molecular markers. Apidologie 44:720–728

    Article  Google Scholar 

  • Tavares MG, Pietrani NT, Durvale MC, Resend HC, Campos LAO (2013b) Genetic divergence between Melipona quadrifasciata Lepeletier (Hymenoptera, Apidae) populations. Genet Mol Biol 36:111–117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Villaneueva-Gutiérrez R, Roubik DW, Colli-Ucán W, Güemez-Ricalde FJ, Buchmann SL (2013) A critical view of colony losses in managed Mayan honey-making bees (Apidae: Meliponini) in the heart of Zona Maya. J Kansas Entomol Soc 86:352–362

    Article  Google Scholar 

  • Wagner AE, Briscoe DA (1983) An absence of enzyme variability within two species of Trigona (Hymenoptera). Heredity 50:97–103

    Article  Google Scholar 

  • Wille A, Orozco E (1975) Observation on the founding of a new colony by Trigona cupira (Hymenoptera: Apidae) in Costa Rica. Rev Biol Trop 22:253–287

    Google Scholar 

  • Zayed A, Whitfield CW (2008) A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera. Proc Natl Acad Sci USA 105:3421–3426

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Peter Clarke and Ku-Ring-Gai council for their support and cooperation, and beekeepers for allowing us to collect samples from their hives. We thank the City of Sydney Environmental grants for funding to TL. An internship to RDSC was provided by the Brazilian government Science Without Borders program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine C. Chapman.

Ethics declarations

Ethical approval

The authors declare that all research complied with ethical standards. TAH owns Sugarbag Bees which trades colonies of stingless bees, including sale and export of T. carbonaria from Queensland to Sydney.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapman, N.C., Byatt, M., Cocenza, R.D.S. et al. Anthropogenic hive movements are changing the genetic structure of a stingless bee (Tetragonula carbonaria) population along the east coast of Australia. Conserv Genet 19, 619–627 (2018). https://doi.org/10.1007/s10592-017-1040-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-017-1040-9

Keywords

Navigation