Skip to main content

Advertisement

Log in

The genetic consequences of the anthropogenic movement of social bees

  • Review Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Invasive species often play a significant role in ecosystem decline and the loss of biodiversity. Nonetheless, a number of social bee species (Apidae) have been, and are still being, transported outside their native ranges for use as pollinators and honey producers. Many authors have emphasized the ecological consequences of introduced social bees. Less appreciated is that hybridization between local and introduced bees can lead to genomic extinction of indigenous bee taxa and to a loss in overall biodiversity. More directly, mating interference between introduced and native bees may result in reduced reproductive success of the indigenous taxa. It is therefore important that the benefits of introducing exotic bee species be carefully weighed against the possible costs to indigenous populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizen MA, Garibaldi LA, Cunningham SA, Klein AM (2008) Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr Biol 18:1572–1575

    Article  PubMed  CAS  Google Scholar 

  • Aizen MA, Morales CL, Vazquez DP, Garibaldi LA, Saez A, Harder LD (2014) When mutualism goes bad: density-dependent impacts of introduced bees on plant reproduction. New Phytol 204:322–328

    Article  Google Scholar 

  • Allsopp M (1992) The capensis calamity. S Afr Bee J 64:52–55

    Google Scholar 

  • Allsopp M, Crewe R (1993) The cape honey bee as a Trojan horse rather than the hordes of Genghis Khan. Am Bee J 133:121–133

    Google Scholar 

  • Alves DA, Imperatriz-Fonseca VL, Francoy TM, Santos-Filho PS, Billen J, Wenseleers T (2011) Successful maintenance of a stingless bee population despite a severe genetic bottleneck. Conserv Genet 12:647–658

    Article  Google Scholar 

  • Batley M, Hogendoorn K (2009) Diversity and conservation status of native Australian bees. Apidologie 40:347–354

    Article  Google Scholar 

  • Beekman M, Allsopp MH, Wossler TC, Oldroyd BP (2008) Factors affecting the dynamics of the honeybee (Apis mellifera) hybrid zone of South Africa. Heredity 100:13–18

    Article  PubMed  CAS  Google Scholar 

  • Breeze TD, Bailey AP, Balcombe KG, Potts SG (2011) Pollination services in the UK: how important are honeybees? Agr Ecosyst Environ 142:137–143

    Article  Google Scholar 

  • Brito RMO, Francisco F, Ho SY, Oldroyd BP (2014) Genetic architecture of the Tetragonula carbonaria species complex of Australian stingless bees (Hymenoptera: Apidae: Meliponini). Biol J Linn Soc 113:149–161

    Article  Google Scholar 

  • Büchler R, Costa C, Hatjina F, Andonov S, Meixner MD, Conte YL, Uzunov A, Berg S, Beinkowska M, Bouga M (2014) The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L. colonies in Europe. J Apic Res 53:205–214

    Article  Google Scholar 

  • Buchmann SL (1985) Bees use vibration to aid pollen collection from non-poricidal flowers. J Kans Entomol Soc 58:517–525

    Google Scholar 

  • Butler C, Calam D, Callow R (1967) Attraction of Apis mellifera drones by the odours of the queens of two other species of honeybees. Nature 213:423–424

    Article  PubMed  CAS  Google Scholar 

  • Calis JNM, Boot WJ, Allsopp MH, Beekman M (2002) Getting more than a fair share: nutrition of worker larvae related to social parasitism in the Cape honey bee, Apis mellifera capensis. Apidologie 33:193–202

    Article  Google Scholar 

  • Camazine S (1986) Differential reproduction of the mite, Varroa jacobsoni (Mesostigmata, Varroidae), on Africanized and European honey bees (Hymenoptera, Apidae). Ann Entomol Soc Am 79:801–803

    Article  Google Scholar 

  • Cane JH, Tepedino VJ (2001) Causes and extent of declines among native North American invertebrate pollinators: detection, evidence, and consequences. Conserv Ecol 5(1):1. [online] http://www.consecol.org/vol5/iss1/art1/. Accessed 9 Sept 2015

  • Chapman NC, Harpur BA, Lim J, Rinderer TE, Allsopp MH, Zayed A, Oldroyd BP (2015) A SNP test to identify Africanized honeybees via proportion of ‘African’ ancestry. Mol Ecol Resourc 15:1346–1355

    Article  CAS  Google Scholar 

  • Clarke KE, Oldroyd BP, Javier J, Quezada-Euán G, Rinderer TE (2001) Origin of honeybees (Apis mellifera L.) from the Yucatan peninsula inferred from mitochondrial DNA analysis. Mol Ecol 10:1347–1355

    Article  PubMed  CAS  Google Scholar 

  • Clarke KE, Rinderer TE, Franck P, Quezada-Euán JG, Oldroyd BP (2002) The Africanization of honeybees (Apis mellifera L.) of the Yucatan: a study of a massive hybridization event across time. Evolution 56:1462–1474

    PubMed  CAS  Google Scholar 

  • Cobey S (1999) The African Bee, Apis mellifera scutellata, threatened in her South African homeland by the Cape Bee, Apis mellifera capensis. Am Bee J 139:462–467

    Google Scholar 

  • Colla SR, Packer L (2008) Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidae), with special focus on Bombus affinis Cresson. Biodivers Conserv 17:1379–1391

    Article  Google Scholar 

  • Collins AM (1987) Comparison of colony defence by European, hybrid (E x A), and mixed honeybee colonies. Am Bee J 127:842

    Google Scholar 

  • Collins AM, Rinderer TE, Harbo JR, Bolten AB (1982) Colony defense by Africanized and European honey bees. Science 218:72–74

    Article  PubMed  CAS  Google Scholar 

  • Coroian CO, Muñoz I, Schluns EA, Paniti-Teleky OR, Erler S, Furdui EM, Marghitas LA, Dezmirean DS, Schluns H, De La Rua P et al (2014) Climate rather than geography separates two European honeybee subspecies. Mol Ecol 23:2353–2361

    Article  PubMed  CAS  Google Scholar 

  • Cortopassi-Laurino M, Imperatriz-Fonseca VL, Roubik DW, Dollin A, Heard T, Aguilar I, Venturieri GC, Eardley C, Nogueira-Neto P (2006) Global meliponiculture: challenges and opportunities. Apidologie 37:275–292

    Article  Google Scholar 

  • Crispo E, Moore JS, Lee-Yaw JA, Gray SM, Haller BC (2011) Broken barriers: human-induced changes to gene flow and introgression in animals. BioEssays 33:508–518

    Article  PubMed  Google Scholar 

  • Danforth BN, Sipes S, Fang J, Brady SG (2006) The history of early bee diversification based on five genes plus morphology. Proc Natl Acad Sci USA 103:15118–15123

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De Jong D (1996) Africanized honey bees in Brazil, forty years of adaptation and success. Bee World 77:67–70

    Article  Google Scholar 

  • De la Rúa P, Jaffé R, Dall’Olio R, Muñoz I, Serrano J (2009) Biodiversity, conservation and current threats to European honeybees. Apidologie 40:263–284

    Article  Google Scholar 

  • Dohzono I, Yokoyama J (2010) Impacts of alien bees on native plant-pollinator relationships: a review with special emphasis on plant reproduction. Appl Entomol Zool 45:37–47

    Article  Google Scholar 

  • El Shafie H, Mogga J, Basedow T (2002) Studies on the possible competition for pollen between the honey bee, Apis mellifera sudanensis, and the imported dwarf honey bee Apis florea (Hym., Apidae) in North-Khartoum (Sudan). J Appl Entomol 126:557–562

    Article  Google Scholar 

  • Francisco FO, Santiago LR, Brito RMO, Oldroyd BP, Arias MC (2014) Hybridization and asymmetric introgression between Tetragonisca angustula and Tetragonisca fiebrigi. Apidologie 45:1–9

    Article  Google Scholar 

  • Franck P, Garnery L, Celebrano G, Solignac M, Cornuet JM (2000) Hybrid origins of honeybees from Italy (Apis mellifera ligustica) and Sicily (A. m. sicula). Mol Ecol 9:907–921

    Article  PubMed  CAS  Google Scholar 

  • Franck P, Garnery L, Loiseau A, Oldroyd BP, Hepburn H, Solignac M, Cornuet JM (2001) Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data. Heredity 86:420–430

    Article  PubMed  CAS  Google Scholar 

  • Franck P, Cameron E, Good G, Rasplus JY, Oldroyd BP (2004) Nest architecture and genetic differentiation in a species complex of Australian stingless bees. Mol Ecol 13:2317–2331

    Article  PubMed  CAS  Google Scholar 

  • Freitas BM, Paxton RJ, Holanda-Neto JD (2002) Identifying pollinators among an array of flower visitors and the case of inadequate cashew pollination in NE Brazil. Pollinating bees. Ministery of Environment, Brasilia, pp 229–244

    Google Scholar 

  • Freitas BM, Imperatriz-Fonseca VL, Medina LM, Kleinert AMP, Galetto L, Nates-Parra G, Quezada-Euan JJG (2009) Diversity, threats and conservation of bees in the Neotropics. Apidologie 40:332–346

    Article  Google Scholar 

  • Galindo-Cardona A, Acevedo-Gonzalez JP, Rivera-Marchand B, Giray T (2013) Genetic structure of the gentle Africanized honey bee population (gAHB) in Puerto Rico. BioMed Central Genet 14:65

    Google Scholar 

  • Gallai N, Salles J-M, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821

    Article  Google Scholar 

  • Goka K, Okabe K, Yoneda M (2006) Worldwide migration of parasitic mites as a result of bumblebee commercialization. Popul Ecol 48:285–291

    Article  Google Scholar 

  • Goulson D (2003) Effects of introduced bees on native ecosystems. Annu Rev Ecol Evol S 34:1–26

    Article  Google Scholar 

  • Goulson D (2010) Impacts of non-native bumblebees in Western Europe and North America. Appl Entomol Zool 45:7–12

    Article  Google Scholar 

  • Groening J, Hochkirch A (2008) Reproductive interference between animal species. Q Rev Biol 83:257–282

    Article  Google Scholar 

  • Guerra JCV, Gonçalves LS, Jong DD (2000) Africanized honey bees (Apis mellifera L.) are more efficient at removing worker brood artificially infested with the parasitic mite Varroa jacobsoni Oudemans than are Italian bees or Italian/Africanized hybrids. Genet Mol Biol 23:89–92

    Article  Google Scholar 

  • Guzman-Novoa E, Page RE (1999) Selective breeding of honey bees (Hymenoptera: Apidae) in Africanized areas. J Econ Entomol 92:521–525

    Article  Google Scholar 

  • Halcroft MT, Spooner-Hart R, Haigh AM, Heard TA, Dollin A (2013) The Australian stingless bee industry: a follow-up survey, one decade on. J Apic Res 52:1–7

    Article  Google Scholar 

  • Harpur BA, Minaei S, Kent CF, Zayed A (2012) Management increases genetic diversity of honey bees via admixture. Mol Ecol 21:4414–4421

    Article  PubMed  Google Scholar 

  • Harpur BA, Minaei S, Kent CF, Zayed A (2013) Admixture increases diversity in managed honey bees: reply to De la Rua et al. (2013) Mol Ecol 22:3211–3215

  • Harpur BA, Kent CF, Molodtsova D, Lebon JMD, Alqarni AS, Owayss AA, Zayed A (2014) Population genomics of the honey bee reveals strong signatures of positive selection on worker traits. Proc Natl Acad Sci USA 111:2614–2619

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Heard T (1988) Propagation of hives of Trigona carbonaria Smith (Hymenoptera: Apidae). Austr J Entomol 27:303–304

    Article  Google Scholar 

  • Heard TA (1999) The role of stingless bees in crop pollination. Annu Rev Entomol 44:183–206

    Article  PubMed  CAS  Google Scholar 

  • Hellmich RL, Rinderer TE (1991) Beekeeping in Venezuela. The “African” honey bee. Boulder Co, Westview, pp 399–411

  • Hellmich RL, Waller GD (1990) Preparing for Africanized honey bees: evaluating control in mating apiaries. Am Bee J 130:537–542

    Google Scholar 

  • Ings TC, Schikora J, Chittka L (2005) Bumblebees, humble pollinators or assiduous invaders? A population comparison of foraging performance in Bombus terrestris. Oecologia 144:508–516

    Article  PubMed  Google Scholar 

  • Ings T, Ward N, Chittka L (2006) Can commercially imported bumble bees out-compete their native conspecifics? J Appl Ecol 43:940–948

    Article  Google Scholar 

  • Inoue MN, Yokoyama J (2010) Competition for flower resources and nest sites between Bombus terrestris (L.) and Japanese native bumblebees. Appl Entomol Zool 45:29–35

    Article  Google Scholar 

  • Jensen AB, Palmer KA, Boomsma JJ, Pedersen BV (2005) Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee, Apis mellifera mellifera, in northwest Europe. Mol Ecol 14:93–106

    Article  PubMed  Google Scholar 

  • Kanbe Y, Okada I, Yoneda M, Goka K, Tsuchida K (2008) Interspecific mating of the introduced bumblebee Bombus terrestris and the native Japanese bumblebee Bombus hypocrita sapporoensis results in inviable hybrids. Naturwissenschaften 95:1003–1008

    Article  PubMed  CAS  Google Scholar 

  • Keller EM, Harris I, Cross P (2014) Identifying suitable queen rearing sites of Apis mellifera mellifera at a regional scale using morphometrics. J Apic Res 53:279–287

    Article  Google Scholar 

  • Kerr WE (1957) Introdução de abelhas africanas no Brasil. Brasil Apicola 3:211–213

    Google Scholar 

  • Kerr WE (1967) The history of the introduction of African bees to Brazil. S Afr Bee J 39:3–5

    Google Scholar 

  • Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B Biol Sci 274:303–313

    Article  Google Scholar 

  • Koeniger N, Koeniger G (2000) Reproductive isolation among species of the genus Apis. Apidologie 31:313–339

    Article  Google Scholar 

  • Koetz AH (2013) Ecology, behaviour and control of Apis cerana with a focus on relevance to the Australian incursion. Insects 4:558–592

    Article  PubMed  PubMed Central  Google Scholar 

  • Kondo NI, Yamanaka D, Kanbe Y, Kunitake YK, Yoneda M, Tsuchida K, Goka K (2009) Reproductive disturbance of Japanese bumblebees by the introduced European bumblebee Bombus terrestris. Naturwissenschaften 96:467–475

    Article  PubMed  CAS  Google Scholar 

  • Kraus F, Franck P, Vandame R (2007) Asymmetric introgression of African genes in honeybee populations (Apis mellifera L.) in Central Mexico. Heredity 99:233–240

  • Kraus FB, Szentgyorgyi H, Rozej E, Rhode M, Moron D, Woyciechowski M, Moritz RFA (2011) Greenhouse bumblebees (Bombus terrestris) spread their genes into the wild. Conserv Genet 12:187–192

    Article  Google Scholar 

  • Martin S, Wossler T, Kryger P (2002) Usurpation of African Apis mellifera scutellata colonies by parasitic Apis mellifera capensis workers. Apidologie 33:215–231

    Article  Google Scholar 

  • Mattila HR, Seeley TD (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317:362–364

    Article  PubMed  CAS  Google Scholar 

  • McQuillan PB, Hingston AB (1999) Displacement of Tasmanian native megachilid bees by the recently introduced bumbleebee, Bombus terrestris (Linnaeus, 1758) (Hymenoptera: Apidae). Aust J Zool 47:59–65

    Article  Google Scholar 

  • Meixner MD, Worobik M, Wilde J, Fuchs S, Koeniger N (2007) Apis mellifera mellifera in eastern Europe—morphometric variation and determination of its range limits. Apidologie 38:191–197

    Article  Google Scholar 

  • Meixner MD, Kryger P, Costa C (2015) Effects of genotype, environment and their interactions on honey bee health in Europe. Curr Opin Insect Sci 10:177–184

    Article  Google Scholar 

  • Mercado NK (1973) The African bees: contribution to their knowledge. Apiacta 8:121–126

    Google Scholar 

  • Michener CD (1974) The social behavior of the bees: a comparative study. Harvard University Press, Cambridge, p 404

  • Michener CD (1975) The Brazilian bee problem. Annu Rev Entomol 20:399–416

    Article  PubMed  CAS  Google Scholar 

  • Miguel I, Iriondo M, Garnery L, Sheppard WS, Estonba A (2007) Gene flow within the M evolutionary lineage of Apis mellifera: role of the Pyrenees, isolation by distance and post-glacial re-colonization routes in the Western Europe. Apidologie 38:141–155

    Article  CAS  Google Scholar 

  • Morandin L, Laverty T, Kevan P (2001) Bumble bee (Hymenoptera: Apidae) activity and pollination levels in commercial tomato greenhouses. J Econ Entomol 94:462–467

    Article  PubMed  CAS  Google Scholar 

  • Moritz RFA, Hartel S, Neumann P (2005) Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. Ecoscience 12:289–301

    Article  Google Scholar 

  • Moritz RF, Haddad N, Bataieneh A, Shalmon B, Hefetz A (2010) Invasion of the dwarf honeybee Apis florea into the near East. Biol Invasions 12:1093–1099

    Article  Google Scholar 

  • Muñoz I, Cepero A, Pinto MA, Martin-Hernandez R, Higes M, De La Rua P (2014a) Presence of Nosema ceranae associated with honeybee queen introduction. Infect Genet Evol 23:161–168

    Article  PubMed  Google Scholar 

  • Muñoz I, Lodesani M, De La Rua P (2014b) Estimating introgression in Apis mellifera sciliana populations: are the conservation islands really effective? Insect Conserv Diver 7:563–571

    Article  Google Scholar 

  • Muñoz I, Pinto MA, De la Rúa P (2014c) Effects of queen importation on the genetic diversity of Macaronesian island honey bee populations (Apis mellifera Linneaus 1758). J Apic Res 53:149–161

  • Munõz I, Henriques D, Johnston JS, Chaves-Galarza J, Kryger P, Pinto MA (2015) Reduced SNP panels for genetic identification and introgression analysis in the dark honey bee (Apis mellifera mellifera). PloS One 10(4):e0124365. doi:10.1371/journal.pone.0124365

  • Nascimento VA, Matusita SH, Kerr WE (2000) Evidence of hybridization between two species of Melipona bees. Genet Mol Biol 23:79–81

    Article  CAS  Google Scholar 

  • Nedic N, Francis RM, Stanisavljevic L, Pihler I, Kezic N, Bendixen C, Kryger P (2014) Detecting population admixture in honey bees of Serbia. J Apic Res 53:303–313

    Article  Google Scholar 

  • Neumann P, Moritz R (2002) The Cape honeybee phenomenon: the sympatric evolution of a social parasite in real time? Behav Ecol Sociobiol 52:271–281

    Article  Google Scholar 

  • Nogueira J, Ramos JdC, Benevenuto J, Fernandes-Salomao TM, Resende HC, de Oliveira Campos LA, Tavares MG (2014) Conservation study of an endangered stingless bee (Melipona capixaba—Hymenoptera: Apidae) with restricted distribution in Brazil. J Insect Conserv 18:317–326

    Article  Google Scholar 

  • Nogueira-Neto P (1964) The spread of a fierce African bee in Brazil. Bee World 45:119–121

    Article  Google Scholar 

  • Nunes TM, Heard TA, Venturieri GC, Oldroyd BP (2014) Emergency queens in Tetragonula carbonaria (Smith, 1854) (Hymenoptera: Apidae: Meliponini). Austral Entomol. doi:10.1111/aen.12104

    Google Scholar 

  • Oldroyd BP (2002) The Cape honeybee: an example of a social cancer. Trends Ecol Evol 17:249–251

    Article  Google Scholar 

  • Oldroyd BP, Rinderer TE, Harbo JR, Buco SM (1992) Effects of intracolonial genetic diversity on honey bee (Hymenoptera: Apidae) colony performance. Ann Entomol Soc Am 85:335–343

    Article  Google Scholar 

  • Oldroyd BP, Lawler SH, Crozier RH (1994) Do feral honey bees (Apis mellifera) and regent parrots (Polytelis anthopeplus) compete for nest sites? Aust J Ecol 19:444–450

  • Oldroyd BP, Cornuet JM, Rowe D, Rinderer TE, Crozier RH (1995) Racial admixture of Apis mellifera in Tasmania, Australia—similarities and differences with natural hybrid zones in Europe. Heredity 74:315–325

    Article  Google Scholar 

  • Oldroyd BP, Allsopp MH, Lim J, Beekman M (2011) A thelytokous lineage of socially parasitic honey bees has retained heterozygosity despite at least 10 years of inbreeding. Evolution 65:860–868

    Article  PubMed  Google Scholar 

  • Oleksa A, Chybicki I, Tofilski A, Burczyk J (2011) Nuclear and mitochondrial patterns of introgression into native dark bees (Apis mellifera mellifera) in Poland. J Apic Res 50:116–129

    Article  Google Scholar 

  • Oleksa A, Wilde J, Tofilski A, Chybicki IJ (2013) Partial reproductive isolation between European subspecies of honey bees. Apidologie 44:611–619

    Article  Google Scholar 

  • Paini D (2004) Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: a review. Austral Ecol 29:399–407

    Article  Google Scholar 

  • Pinto MA, Rubink WL, Coulson RN, Patton JC, Johnston JS (2004) Temporal pattern of Africanization in a feral honeybee population from Texas inferred from mitochondrial DNA. Evolution 58:1047–1055

    Article  PubMed  Google Scholar 

  • Pinto MA, Rubink WL, Patton JC, Coulson RN, Johnston JS (2005) Africanization in the United States replacement of feral european honeybees (Apis mellifera L.) by an African hybrid swarm. Genetics 170:1653–1665

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Plettner E, Otis GW, Wimalaratne PDC, Winston ML, Slessor KN, Pankiw T, Punchihewa PWK (1997) Species- and caste-determined mandibular gland signals in honeybees (Apis). J Chem Ecol 23:363–377

    Article  CAS  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Quezada-Euan JJG, Echazarreta CM, Paxton RJ (1996) The distribution and range expansion of Africanized honey bees (Apis mellifera) in the state of Yucatan, Mexico. J Apic Res 35:85–95

    Google Scholar 

  • Remnant EJ, Koetz A, Tan K, Hinson E, Beekman M, Oldroyd BP (2014) Reproductive interference between honeybee species in artificial sympatry. Mol Ecol 23:1096–1107

    Article  PubMed  Google Scholar 

  • Ricou C, Schneller C, Amiaud B, Plantureux S, Bockstaller C (2014) A vegetation-based indicator to assess the pollination value of field margin flora. Ecol Indic 45:320–331

    Article  Google Scholar 

  • Rinderer TE (1988) Evolutionary aspects of the Africanization of honey-bee populations in the Americas. In: Needham GR, Page RE, Delfinado-Baker M, Bowman CE (eds) Africanized honey bees and bee mites. Ellis Horwood, Chichester, pp 13–28

    Google Scholar 

  • Rinderer TE, Oldroyd BP, Wongsiri S, Sylvester HA, Deguzman LI, Potichot S, Sheppard WS, Buchmann SL (1993) Time of drone flight in four honey-bee species in south-eastern Thailand. J Apic Res 32:27–33

    Google Scholar 

  • Roubik DW, Moreno JE, Vergara C, Wittmann D (1986) Sporadic food competition with the African honey bee: projected impact on neotropical social bees. J Trop Ecol 2:97–111

    Article  Google Scholar 

  • Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer, Berlin, p 284

  • Ruttner F, Maul V (1983) Experimental analysis of reproductive interspecies isolation of Apis mellifera L. and Apis cerana Fabr. Apidologie 14:309–327

    Article  Google Scholar 

  • Sakagami SF (1959) Some interspecific relations between Japanese and European honeybees. J Anim Ecol 28:51–68

    Article  Google Scholar 

  • Schneider S, McNally L (1992) Factors influencing seasonal absconding in colonies of the African honey bee, Apis mellifera scutellata. Insectes Soc 39:403–423

    Article  Google Scholar 

  • Schneider SS, Hoffman GD, Smith DR (2004) The African honey bee: factors contributing to a successful biological invasion. Annu Rev Entomol 49:351–376

  • Seeley TD, Tarpy DR (2007) Queen promiscuity lowers disease within honeybee colonies. Proc R Soc B Biol Sci 274:67–72

    Article  Google Scholar 

  • Sheppard WS, Rinderer TE, Mazzoli JA, Stelzer JA, Shimanuki H (1991) Gene flow between African-derived and European-derived honey-bee populations in Argentina. Nature 349:782–784

    Article  Google Scholar 

  • Slaa EJ, Chaves LAS, Malagodi-Braga KS, Hofstede FE (2006) Stingless bees in applied pollination: practice and perspectives. Apidologie 37:293–315

    Article  Google Scholar 

  • Smith DR, Taylor OR, Brown WM (1989) Neotropical Africanized honey bees have African mitochondrial-DNA. Nature 339:213–215

    Article  PubMed  CAS  Google Scholar 

  • Soland-Reckeweg G, Heckel G, Neumann P, Fluri P, Excoffier L (2009) Gene flow in admixed populations and implications for the conservation of the Western honeybee, Apis mellifera. J Insect Conserv 13:317–328

    Article  Google Scholar 

  • Spivak M, Fletcher DJ, Breed MD (1991) The “African” honey bee. Westview Press, Boulder, p 435

  • Tarpy DR, vanEngelsdorp D, Pettis JS (2013) Genetic diversity affects colony survivorship in commercial honey bee colonies. Naturwissenschaften 100:723–728

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida K, Kondo NI, Inoue MN, Goka K (2010) Reproductive disturbance risks to indigenous Japanese bumblebees from introduced Bombus terrestris. Appl Entomol Zool 45:49–58

    Article  Google Scholar 

  • vanEngelsdorp D, Meixner MD (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol 103:80–95

    Article  Google Scholar 

  • Verma S, Ruttner F (1983) Cytological analysis of the thelytokous parthenogenesis in the Cape honeybee (Apis mellifera capensis Escholtz). Apidologie 14:41–57

    Article  Google Scholar 

  • Villanueva GR, Roubik DW, Colli-Ucan W (2005) Extinction of Melipona beecheii and traditional beekeeping in the Yucatán peninsula. Bee World 86:35–41

    Article  Google Scholar 

  • Wallberg A, Han F, Wellhagen G, Dahle B, Kawata M, Haddad N, Simões ZLP, Allsopp MH, Kandemir I, De la Rúa P (2014) A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nat Genet 46:1081–1089

    Article  PubMed  CAS  Google Scholar 

  • Whitfield CW, Behura SK, Berlocher SH, Clark AG, Johnston JS, Sheppard WS, Smith DR, Suarez AV, Weaver D, Tsutsui ND (2006) Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science 314:642–645

    Article  PubMed  CAS  Google Scholar 

  • Winston ML (1991) The biology of the honey bee. Harvard University Press, Cambridge, p 294

  • Winston ML (1992a) The biology and management of Africanized honey bees. Annu Rev Entomol 37:173–193

    Article  Google Scholar 

  • Winston ML (1992b) Killer Bees: the Africanized honeybee in the Americas. Harvard University Press, Cambridge, p 176

  • Yu L, Han S (2003) Effect of habitat and interspecific competition on Apis cerana cerana colony distribution. J Appl Ecol 14:553–556

    Google Scholar 

  • Zayed A, Whitfield CW (2008) A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee. Apis mellifera. Proc Natl Acad Sci USA 105:3421–3426

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding came from the Australian Research Council and the Branco Weiss Society in Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Byatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byatt, M.A., Chapman, N.C., Latty, T. et al. The genetic consequences of the anthropogenic movement of social bees. Insect. Soc. 63, 15–24 (2016). https://doi.org/10.1007/s00040-015-0441-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-015-0441-3

Keywords

Navigation