Skip to main content

Advertisement

Log in

Fine- and local- scale genetic structure of Dysoxylum malabaricum, a late-successional canopy tree species in disturbed forest patches in the Western Ghats, India

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, which is the world’s most densely populated biodiversity hotspot. In this study, we used variation at ten nuclear simple sequence repeat loci to investigate genetic diversity and fine scale spatial genetic structure (FSGS) in seedlings and adults of D. malabaricum from four forest patches in the northern part of the Western Ghats. When genetic variation was compared between seedlings and adults across locations, significant differences were detected in allelic richness, observed heterozygosity, fixation index (F IS), and relatedness (P < 0.05). Reduced genetic diversity and increased relatedness at the seedling stage might be due to fragmentation and disturbance. There was no FSGS at the adult stage and FSGS was limited to shorter distance classes at the seedling stage. However, there was clear spatial genetic structure at the landscape level (<50 km), regardless of age class, due to limited gene flow between forest patches. A comparison of the distributions of size classes in the four locations with published data from a more southern area, showed that large trees (diameter at breast height, DBH, >130 cm) are present in the southern sacred forests but not in the northern forest reserves. This pattern is likely due to stronger harvesting pressure in the north compared to the south, because in the north there are no cultural taboos regulating the extraction of natural resources. The implications for forest conservation in this biodiversity hotspot are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdullah SA, Nakagoshi N (2007) Forest fragmentation and its correlation to human land use change in the state of Selangor, peninsular Malaysia. For Ecol Manag 241:39–48

    Article  Google Scholar 

  • Arnaud-Haond S, Teixeira S, Massa SI, Billot C, Saenger P, Coupland G, Duarte CM, Serrão EA (2006) Genetic structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol Ecol 15:3515–3525

    Article  CAS  PubMed  Google Scholar 

  • Banks SC, Peakall R (2012) Genetic spatial autocorrelation can readily detect sex-biased dispersal. Mol Ecol 21:2092–2105

    Article  PubMed  Google Scholar 

  • Banks SC, Cary GJ, Smith AL, Davies ID, Driscoll DA, Gill AM, Lindenmayer DB, Peakall R (2013) How does ecological disturbance influence genetic diversity? Trends Ecol Evol 28(11):670–679

    Article  PubMed  Google Scholar 

  • Bhagwat SA, Kushalappa CG, Williams PH, Brown ND (2005) A landscape approach to biodiversity conservation in the Western Ghats of India. Conserv Biol 19:1853–1862

    Article  Google Scholar 

  • Bodare S, Tsuda Y, Ravikanth G, Uma Shaanker R, Lascoux M (2013) Genetic structure and demographic history of the endangered tree species Dysoxylum malabaricum (Meliaceae. in Western Ghats, India: implications for conservation in a biodiversity hotspot. Ecol Evol 3:3233–3248

    PubMed  PubMed Central  Google Scholar 

  • Boraiah KT, Vasudeva R, Bhagwat AS, Kushalappa CG (2003) Do informally managed sacred groves have higher richness and regeneration of medicinal plants than state-managed reserve forests? Curr Sci 84:804–808

    Google Scholar 

  • Cavers S, Degen B, Caron H, Lemes MR, Margis R, Salgueiro F, Lowe AJ (2005) Optimal sampling strategy for estimation of spatial genetic structure in tree populations. Heredity 95:281–289

    Article  CAS  PubMed  Google Scholar 

  • Chandrakanth MG, Bhat MG, Accavva MS (2004) Socio-economic changes and sacred groves in South India: protecting a community-based resource management institution. Nat Res Forum 28:102–111

    Article  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  • Chybicki IJ, Burczik J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113

    Article  CAS  PubMed  Google Scholar 

  • Cicotta RP, Wisnewski J, Engelman R (2000) Human population in the biodiversity hotspots. Nature 404:990–992

    Article  Google Scholar 

  • Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Den Boer PJ, Gradwell GR (eds) Dynamics of population. Pudo, Wageningen

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361

    Article  Google Scholar 

  • Eckert CG, Samis E, Lougheed C (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  CAS  PubMed  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L. Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  PubMed  Google Scholar 

  • Epperson BK (1992) Spatial structure of genetic variation within populations of forest trees. New For 6:257–278

    Article  Google Scholar 

  • Epperson BK (2005) Estimating dispersal from short distance spatial autocorrelation. Heredity 95:7–15

    Article  CAS  PubMed  Google Scholar 

  • Epperson BK, Li T-Q (1996) Measurement of genetic structure within populations using Moran’s spatial autocorrelation statistics. Proc Natl Acad Sci USA 93:10528–10532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Castella E, Antoine C, Paillat G, Goudet J (2009) Parallel changes in genetic diversity and species diversity following a natural disturbance. Mol Ecol 8:1137–1144

    Article  Google Scholar 

  • Finger A, Kettle CJ, Kaiser-Bunbury CN, Valentin T, Mougal J, Ghazoul J (2012) Forest fragmentation genetics in a formerly widespread island endemic tree: Vateriopsis seychellarum (Dipterocarpaceae). Mol Ecol 21:2369–2382

    Article  CAS  PubMed  Google Scholar 

  • Fogelqvist J, Niittyvuopio A, Ågren J, Savolainen O, Lascoux M (2010) Cryptic population genetic structure: the number of inferred clusters depends on sample size. Mol Ecol Res 10:314–323

    Article  Google Scholar 

  • Gokhale Y (2004) Reviving traditional forest management in Western Ghats: study in Karnataka. Econ Polit Wkly 39:3556–3559

    Google Scholar 

  • Goudet J (1995) Fstat version 1.2: a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Goudet J (2001) FSTAT (version 2.9.3: a program to estimate and test gene diversities and fixation indices. www.unil.ch/izea/softwares/fstat.html

  • Gunaga S, Rajeshwari N, Vasudeva R (2013) Tree diversity and disturbance of kaan forests: relics of a community protected climax vegetation in the Central Western Ghats. Trop Ecol 54:117–131

    Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2(4):618–620

  • Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier MH, Doligez A, Dutech C, Kremer A, Latouche-Halle C, Troispoux V, Veron V, Degen B (2006) Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Mol Ecol 15:559–571

    Article  CAS  PubMed  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Hemmilä S, Mohana Kumara P, Gustafsson S, Sreejayan N, Raghavandra A, Vasudeva R, Ravikanth G, Ganeshaiah KN, Uma Shaanker R, Lascoux M (2010) Development of polymorphic microsatellite loci in the endangered tree species Dysoxylum malabaricum and cross amplification with Dysoxylum binectariferum. Mol Ecol Res 10:404–408

    Article  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Res 9:1322–1332

    Article  Google Scholar 

  • Hufford KM, Hamrick JL (2003) Viability selection at three early life stages of the tropical tree, Platypodium elegans (Fabaceae, Papilionoideae). Evolution 57:518–526

    Article  PubMed  Google Scholar 

  • Ismail SA, Ghazoul J, Ravikanth G, Uma Shaanker R, Kushalappa CG, Kettle CJ (2012) Does long distance pollen dispersal preclude inbreeding in tropical trees? Fragmentation genetics of Dysoxylum malabaricum in an agro-forest landscape. Mol Ecol 21:5484–5496

    Article  CAS  PubMed  Google Scholar 

  • Ismail SA, Ghazoul J, Ravikanth G, Uma Shaanker R, Kushalappa CG, Kettle CJ (2014) Forest trees in human modified landscapes: ecological and genetic drivers of recruitment failure in Dysoxylum malabaricum. Plos One 9:e89437

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwaizumi MG, Tsuda Y, Ohtani M, Tsumura Y, Takahashi M (2013) Recent distribution changes affect geographic clines in genetic diversity and structure of Pinus densiflora natural populations in Japan. For Ecol Manag 304:407–416

    Article  Google Scholar 

  • Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528

    Article  Google Scholar 

  • Jump AS, Peñuelas J (2007) Extensive spatial genetic structure revealed by AFLP but not SSR molecular markers in the wind-pollinated tree, Fagus sylvatica. Mol Ecol 16:925–936

    Article  CAS  PubMed  Google Scholar 

  • Jump AS, Rico L, Coll M, Peñuelas J (2012) Wide variation in spatial genetic structure between natural populations of the European beech (Fagus sylvatica) and its implications for SGS comparability. Heredity 108:633–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar AN (2009) Saving culture for biodiversity. Exploring the “Bio-Cultural” Heritage in conservation of 5 Rare, Endemic and Threatened (RET. Tree Species of Western Ghats of Kerala. Alcoa Foundation’s Practitioner Fellowship Programme 2008, IUCN, Gland

  • Langella O (2007) Populations 1.2.30: Population genetic software (individuals or populations distances, phylogenetic trees), France. http://bioinformatics.org/~tryphon/ populations/

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trend Ecol Evol 18:189–197

    Article  Google Scholar 

  • Manjunath L (2003) Reproductive biology and half-sib family performance of Dysoxylum malabaricum Bedd.: an important threatened timber species. Master of Science (Forest Biology. thesis, submitted to the University of Agricultural Sciences, Dharwad, pp. 1–73

  • Maruyama T, Fuerst PA (1985) Population bottleneck and non-equilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathiasen P, Rovere AE, Premoli AC (2007) Genetic structure and early effects of inbreeding in fragmented temperate forests of a self-Incompatible tree, Embothrium coccineum. Conserv Biol 21:232–240

    Article  PubMed  Google Scholar 

  • Menon ARR, Balasubramanyan K (2006) Evaluation of plant diversity in unlogged and logged forest stands of varying intensities. KFRI Research Report No. 281 ISSN 0970-8103, Published by Kerala Forest Research Institute, Peechi, Thrissur, Kerala

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Naito Y, Konuma A, Iwata H, Suyama Y, Seiwa K, Okuda T, Lee S, Muhammad N, Tsumura Y (2005) Selfing and inbreeding depression in seeds and seedlings of Neobalanocarpus heimii (Dipterocarpaceae). J Plant Res 118:423–430

    Article  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19(2):153–170

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx Tutorial 3. Spatial genetic analysis. http://biology-assets.anu.edu.au/GenAlEx/Tutorials.html

  • Peakall R, Smouse PE, Huff DR (1995) Evolutionary implications of allozyme and RAPD variation in diploid populations of dioecious buffalo grass (Buchloë dactyloides (Nutt. (Engelm)). Mol Ecol 4:135–147

    Article  CAS  Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Ravikumar K, Ved DK (2000) 100 Red Listed Medicinal Plants of Conservation Concern in Southern India, Foundation for Revitalisation of Local Health Traditions, Bangalore, pp. 132–133

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2.: population genetics software for exact tests and ecumenicism. Heredity 86:248–249

    Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Res 8:103–106

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Shivanna KR, Gladwin J, Shaanker RU (2003) Reproductive ecology and population enrichment of endemic and critically endangered plant species of the Western Ghats. National Bioresources Development Board, Department of Biotechnology, Government of India, pp. 38–61

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multi allele and multi-locus genetic structure. Heredity 82:561–573

    Article  PubMed  Google Scholar 

  • Smouse PE, Peakall R, Gonzales E (2008) A heterogeneity test for fine-scale genetic structure. Mol Ecol 17:3389–3400

    Article  PubMed  Google Scholar 

  • Sork VL, Smouse PE (2006) Genetic analysis of landscape connectivity in tree populations. Landsc Ecol 21:821–836

    Article  Google Scholar 

  • Steinitz O, Troupin D, Vendramin GG, Nathan R (2011) Genetic evidence for a Janzen-Connell recruitment pattern in reproductive offspring of Pinus halepensis trees. Mol Ecol 20:4152–4164

    Article  CAS  PubMed  Google Scholar 

  • Struebig MJ, Kingston T, Petit EJ, Le Comber SC, Zubaid A, Mohd-Adnan A, Rossiter SJ (2011) Parallel declines in species and genetic diversity in tropical forest fragments. Ecology Letters 14(6):582–590

  • Tabarelli M, Peres CA, Melo FP (2012) The ‘few winners and many losers’ paradigm revisited: emerging prospects for tropical forest biodiversity. Biol Conserv 155:136–140

    Article  Google Scholar 

  • Tambat B, Rajanikanth G, Ravikanth G, Uma Shaanker R, Ganeshaiah KN, Kushallappa CG (2005) Seedling mortality in two vulnerable tree species in the sacred groves of Western Ghats, South India. Curr Sci 88(3):350–352

    Google Scholar 

  • Tsuda Y, Sawada H, Ohsawa T, Nakao K, Nishikawa H, Ide Y (2010) Landscape genetic structure of Betula maximowicziana in the Chichibu mountain range, central Japan. Tree Genet Genome 6:377–387

    Article  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    Article  CAS  PubMed  Google Scholar 

  • Vellend M (2004) Parallel effects of land-use history on species diversity and genetic diversity of forest herbs. Ecology 85:3043–3055

    Article  Google Scholar 

  • Vellend M, Geber MA (2005) Connections between species diversity and genetic diversity. Ecol Lett 8:767–781

    Article  Google Scholar 

  • Wang R, Compton SG, Chen X-Y (2011) Fragmentation can increase spatial genetic structure without decreasing pollen-mediated gene flow in a wind-pollinated tree. Mol Ecol 20:4421–4432

    Article  PubMed  Google Scholar 

  • Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wright SJ, Muller-Landau HC (2006) The future of tropical forest species. Biotropica 38(2006):287–301

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Ashwini S, Sumangala R.C, Jagadish M.R. and Priti Gururaj for their assistance and support in our work in the field and laboratory. This study was supported by a grant from the Swedish International Development Agency (SIDA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Tsuda.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10592_2016_877_MOESM1_ESM.pdf

Supplementary material 1 (PDF 114 kb) Distribution of size classes of adult D. malabricum trees in the Coorg population examined by Ismail et al. (2014). Size is given as diameter at breast height (DBH) in cm

Supplementary material 2 (DOCX 14 kb)

Supplementary material 3 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodare, S., Ravikanth, G., Ismail, S.A. et al. Fine- and local- scale genetic structure of Dysoxylum malabaricum, a late-successional canopy tree species in disturbed forest patches in the Western Ghats, India. Conserv Genet 18, 1–15 (2017). https://doi.org/10.1007/s10592-016-0877-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0877-7

Keywords

Navigation