Skip to main content

Advertisement

Log in

All dam-affected trout populations are not alike: fine scale geographic variability in resident rainbow trout in Icicle Creek, WA, USA

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Recognizing the genetic diversity within and among collections of allopatric rainbow trout is an important step in understanding and monitoring the dynamics of the metapopulation structure of a species like Oncorhynchus mykiss with resident and anadromous life history forms. Prior to the removal of a barrier and the recolonization of Icicle Creek with anadromous steelhead, we report the degree to which collections of above-barrier resident rainbow trout from 13 sites differ from downstream steelhead, and the pattern of genetic diversity and connectivity among resident collections using 14 microsatellite loci. Measures of genetic variability (H e, A R, and A/L) are low in the upper-most collections of residents and estimates of N e change approximately 4-fold from the upper tributaries (N e~90) to the lowest main stem collections (N e~360) over 35 river kilometers (rkm). The overall comparison of resident rainbow trout versus below-barrier steelhead is F ST = 0.053. A STRUCTURE analysis of all 1,730 fish indicated three populations within the above-barrier collections of resident fish. Notably, two sets of upstream collections of rainbow trout, separated at a minimum of 16.4 rkm, had a mean F ST = 0.128. Natural passage barriers account for some of the observed stock structure in Icicle Creek but the strongest differences are not associated with barriers by our analysis. No significant temporal variability was seen within four rainbow trout sites and one steelhead site; and no hatchery rainbow trout ancestry was detected in the watershed. In general these results highlight the need for conservation efforts to include fine-scale evaluations of population structure of riverine fishes above barriers to increase the accuracy of understanding and monitoring intra specific diversity and the biological effects of dams and dam removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allendorf FW, England PR, Luikart G, Ritchie PA, Ryman N (2008) Genetic effects of harvest on wild animal populations. Trends Ecol Evol 23:327–337

    Article  PubMed  Google Scholar 

  • Baker J, Bentzen P, Moran P (2002) Molecular markers distinguish coastal cutthroat trout from coastal rainbow trout/steelhead and their hybrids. Trans Am Fish Soc 131:404–417

    Article  CAS  Google Scholar 

  • Belkhir KP, Borsa L, Chikhi N, Raufaste, Bonhomme F (1996) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. CNRS UMR 5000, laboratoire génome, populations, interactions, Université de Montpellier II, Montpellier (France)

  • Bjornn TC, Reiser DW (1991) Influences of forest and rangeland management on salmonid fishes and their habitats. In: Meehan WR (ed) Habitat requirements of salmonids in streams. American Fisheries Society, Special Publication, Bethesda, pp 83–138

    Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21:550–570

    Article  Google Scholar 

  • Christie MR, Marine ML, Blouin MS (2011) Who are the missing parents? Grandparentage analysis identifies multiple sources of gene flow into a wild population. Mol Ecol 20:1263–1276

    Article  PubMed  Google Scholar 

  • Clemento AJ, Anderson EC, Boughton D, Girman D, Garza JC (2008) Population genetic structure and ancestry of Oncorhynchus mykiss populations above and below dams in south-central California. Conserv Genet. doi:10.1007/s10592-008-9712-0

    Google Scholar 

  • Courter II, Child DB, Hobbs JA, Garrison TM, Glessner JJG, Duery S (2013) Resident rainbow trout produce anadromous offspring in a large interior watershed. Can J Fish Aquat Sci 70:701–710

    Article  Google Scholar 

  • Currens KP, Schreck CB, Li HW (1990) Allozyme and morphological divergence of rainbow trout (Oncorhynchus mykiss) above and below waterfalls in the Deschutes river, Oregon. Copeia 3:730–746

    Article  Google Scholar 

  • DeHaan PW, Bernall Shana R, DosSantos Joseph M, Lockard Lawrence L, Ardren William R (2011) Use of genetic markers to aid in re-establishing migratory connectivity in a fragmented metapopulation of bull trout (Salvelinus confluentus). Can J Fish Aquat Sci 68:1952–1969

    Article  Google Scholar 

  • Deiner K, Garza JC, Coey R, Girman DJ (2007) Population structure and genetic diversity of trout (Oncorhynchus mykiss) above and below natural and man-made barriers in the Russian River, California. Conserv Genet 8:437–454

    Article  Google Scholar 

  • Dionne M, Caron F, Dodson JJ, Bernatchez L (2009) Comparative survey of within-river genetic structure in Atlantic salmon; relevance for management and conservation. Conserv Biol 10:869–879

    CAS  Google Scholar 

  • Doctor K, Berejikian B, Hard JJ, VanDoornik D (2014) Growth-mediated life history traits of Steelhead reveal phenotypic divergence and plastic response to temperature. Trans Am Fish Soc 143:317–333

    Article  Google Scholar 

  • Doctor KB, Berejikian, Winans GA. submitted Evidence of between-population variation in morphology and thermal plasticity of agonistic behavior in steelhead. Environ Biol Fish

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolut Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Fluker BL, Kuhajda BR, Harris PM (2014) The effects of riverine impoundment on genetic structure and gene flow in two stream fishes in the Mobile River basin. Freshw Biol 59:526–543

    Article  CAS  Google Scholar 

  • Ford MJE (2011) Status review update for Pacific salmon and steelhead listed under the Endangered Species Act: Pacific Northwest, U.S. Dept. of Commerce

  • Frank BM, Piccolo JJ, Baret PV (2011) A review of ecological models for brown trout: towards a new demogenetic model. Ecol Freshw Fish 20:167–198

    Article  Google Scholar 

  • Fraser DJ, Weir LK, Bernatchez L, Hansen MM, Taylor EB (2011) Heredity 106:404–420

  • Garcia de Leaniz C, Fleming IA, Einum S, Verspoor E, Jordan WC, Consuegra S, Aubin-Horth N, Lajus D, Letcher BH, Youngson AF, Webb JH, Vollestad LA, Villanueva B, Ferguson A, Quinn TP (2007) A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Biol Rev Camb Philos Soc 82:173–211

    Article  CAS  PubMed  Google Scholar 

  • Good TP, Waples RS, Adams P (2005) Updated status of federally listed ESUs of West Coast salmon and steelhead. NOAA Tech Memo NMFS-NWFSC 66:598

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html Updated from Goudet (1995)

  • Gudmundsson LA, Gudjonsson S, Garteinsdottir G, Scarnecchia DL, Danıelsdottir AK, Pampoulie C (2013) Spatio-temporal effects of stray hatchery-reared Atlantic salmon Salmo salar on population genetic structure within a 21 km-long Icelandic river system. Conserv Genet 14:1217–1231

    Article  Google Scholar 

  • Heath DD, Pollard S, Herbinger C (2001) Genetic structure and relationships among steelhead trout (Oncorhynchus mykiss) populations in British Columbia. Heredity 86:618–627

    Article  CAS  PubMed  Google Scholar 

  • Hudman SP, Gido KB (2013) Multi-scale effects of impoundments on genetic structure of creek chub (Semotilus atromaculatus) in the Kansas River basin. Freshw Biol 58:441–453

    Article  Google Scholar 

  • Jensen LF, Hansen MM, Pertoldi C, Holdensgaard G, Dons Mensberg K-LD, Loeschcke V (2008) Local adaptation in brown trout early life-history traits: implications for climate change adaptability. Proc Royal Soc B 275:2859–2868

    Article  Google Scholar 

  • Junker J, Peter A, Wagner C, Mwaiko S, Germann B, Seehausen O, Keller I (2012) River fragmentation increases localized population genetic structure and enhances asymmetry of dispersal in bullhead (Cottus gobio). Conserv Genet 13:545–556

    Article  Google Scholar 

  • Kanno Y, Vokoun JC, Letcher BH (2011) Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks. Mol Ecol 20:3711–3729

    Article  PubMed  Google Scholar 

  • Keeley ER, Parkinson EA, Taylor EB (2005) Ecotypic differentiation of native rainbow trout (Oncorhynchus mykiss) populations from British Columbia. Can J Fish Aquat Sci 62:1523–1539

    Article  Google Scholar 

  • Kelson SA, Kapuscinski, Timmins D, Ardren W (2014) Fine-scale genetic structure of brook trout in a dendritic stream network. Conserv Genet 1–12

  • Kozfkay CC, Campbell MR, Meyer KA, Schill DJ (2011) Influences of habitat and hybridization on the genetic structure of redband trout in the Upper Snake River Basin, Idaho. Trans Am Fish Soc 140:282–295

    Article  CAS  Google Scholar 

  • Langella O (2001) Populations 1.2.30: population genetic structure (individuals or populations distances, phylogenetic trees). Centre National de la Recherche Scientifique, Laboratorie Populations, Genetique et Evolution

  • Mayr E (1963) Populations, species, and evolution. Belkamp Press of Harvard University Press, Cambridge

    Book  Google Scholar 

  • Morita K, Yamamoto S (2001) Contrasts in movement behavior of juvenile white-spotted charr between stocks above and below a dam. Fish Sci 67:179–181

    Article  CAS  Google Scholar 

  • Morita K, Yamamoto S, Hoshino N (2000) Extreme life history change of white-spotted char (Salvelinus leucomaenis) after damming. Can J Fish Aquat Sci 57:1300–1306

    Article  Google Scholar 

  • Mullan JW, Williams KR, Rhodus G, Hillman TW, McIntyre JD (1992) Production and habitat of salmonids in Mid-Columbia River tributary streams. USFW

  • Narum SR, Zendt JS, Graves D, Sharp WR (2008) Influence of landscape on resident and anadromous life history types of Oncorhynchus mykiss. Can J Fish Aquat Sci 65:1013–1023

    Article  Google Scholar 

  • Neville H, Dunham J, Peacock M (2006) Landscape attributes and life history variability shape genetic structure of trout populations in a stream network. Landscape Ecol 21:901–916

    Article  Google Scholar 

  • Northcote TG (2010) Controls for trout and char migratory/resident behaviour mainly in stream systems above and below waterfalls/barriers: a multidecadal and broad geographical review. Ecol Freshw Fish 19:487–509

    Article  Google Scholar 

  • Northcote TG, Hartman GF (1988) The biology and significance of stream trout populations (Salmo spp.) living above and below waterfalls. Polskie Archiwum Hydrobiol 35:409–442

    Google Scholar 

  • Parkinson E, Behnke RJ, Pollard W (1984) A morphological and electrophoretic comparison of rainbow trout (Salmo gairdneri) above and below barriers on five streams on Vancouver Island. BC Fisheries Management, Oxford Report No 83

    Google Scholar 

  • Pearse DE, Hayes SA, Bond MH, Hanson CV, Anderson EC, Macfarlane RB, Garza JC (2009) Over the falls? Rapid evolution of ecotypic differentiation in steelhead/rainbow trout (Oncorhynchus mykiss). J Hered 100:515–525

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quinn TP (2005) The Behavior and Ecology of Pacific Salmon and Trout. University of Washington Press, Seattle

    Google Scholar 

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Reiser DW, Huang C-H, Beck S, Gagner M, Jeanes E (2006) Defining flow windows for upstream passage of adult anadromous salmonids at cascades and falls. Trans Am Fish Soc 135:668–679

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F statistics under isolation by distance. Genetics 145:1219–1228

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schlenger PA, MacLennan E, Iverson K, Fresh C, Tanner B, Lyons S, Todd R, Carman D, Myers S, Campbell, Wick A (2011) Strategic needs assessment: analysis of nearshore ecosystem process degradation in Puget Sound 2011

  • Small MP, McLellan JG, Loxterman J, Von Bargen J, Frye A, Bowman C (2007) Fine-scale population structure of rainbow trout in the Spokane River drainage in relation to hatchery stocking and barriers. Trans Am Fish Soc 136:301–317

    Article  CAS  Google Scholar 

  • Stelkens RB, Jaffuel G, Escher M, Wedekind C (2012) Genetic and phenotypic population divergence on a microgeographic scale in brown trout. Mol Ecol 21:2896–2915

    Article  PubMed  Google Scholar 

  • Sterling K, Reed D, Noonan B, Warren M Jr (2012) Genetic effects of habitat fragmentation and population isolation on Etheostoma raneyi (Percidae). Conserv Genet 13:859–872

    Article  Google Scholar 

  • Tamkee P, Parkinson E, Taylor EB (2010) The influence of Wisconsinan glaciation and contemporary stream hydrology on microsatellite DNA variation in rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 67:919–935

    Article  CAS  Google Scholar 

  • Taylor EB (1991) A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture 98:185–207

    Article  Google Scholar 

  • Thrower F, Guthrie CM, Nielsen JL, Joyce JE (2004) A comparison of genetic variation between an anadromous steelhead, Oncorhynchus mykiss, population and seven derived populations sequestered in freshwater for 70 years. Environ Biol Fishes 69:111–125

    Article  Google Scholar 

  • Van Doornik DM, Berejikian BA, Campbell LA, Volk EC (2010) The effect of a supplementation program on the genetic and life history characteristics of an Oncorhynchus mykiss population. Can J Fish Aquat Sci 67:1449–1458

    Article  Google Scholar 

  • Van Doornik DM, Berejikian BA, Campbell LA (2013) Gene flow between sympatric life history forms of Oncorhynchus mykiss located above and below migratory barriers in Hood Canal, Washington

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  PubMed  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary N e using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262

    Article  PubMed Central  PubMed  Google Scholar 

  • Webb PW (1976) The Effect of size on the fast-start performance of rainbow trout Salmo gardnieri, and considerations of piscivorous predator-prey interactions. J Exp Biol 65:157–177

    CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Winans GA, McHenry ML, Baker J, Goodbla A, Iwamoto E, Kuligowski D, Miller KM, Small MP, Spruell P, Van Doornik D (2008) Genetic inventory of anadromous Pacific salmonids of the Elwha River prior to dam removal. Northwest Sci 82:128–141

    Article  Google Scholar 

  • Winans GA, Baird MC, Baker J (2010) A genetic and phenetic baseline before the recolonization of steelhead above Howard Hanson Dam, Green River, Washington. North Am J Fish Manag 30:742–756

    Article  Google Scholar 

Download references

Acknowledgments

J. Glasgow, M. Waite, and K. Beardslee of the Wild Fish Conservancy assisted in study design and provided logistical support. M. Ford, K. Nichols, and D. Van Doornik provided useful reviews of an earlier draft. D. Patterson provided laboratory support. Field assistance was provided by Wild Fish Conservancy field crew members T. Buehrens, B. Burrill, J. Crandall, J. Fletcher, B. McMillan, A. Thompson, C. Tran, W. Ardren, U.S. Fish and Wildlife Service, provided the Peshatin collection. Funding for the project was provided in part by a generous grant from the Icicle Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Winans.

Appendices

Appendix 1

Barriers to upstream movement of resident-sized rainbow trout in Icicle Creek. Known barriers are **; all others are potential barriers. Relevant collection sites are included for perspective

Barrier name

rkm

Elevation drop (m)

Distance (m)

Gradient (%)

Jack Creek site

28.9

   

Jack/Icicle confluence

28.7

1.1

150

0.7

Icicle-at-Jack site

27.9

   

Chatter Gorge Falls**

26.3

4.5

100

4.5

Hoxie

25.3

   

Doctor

24.1

   

Ida

23.0

   

Johnny site

19.8

   

Icicle-at-Johnny

19.7

2

150

1.3

Cascade Reach 1

19.4

8.7

140

6.2

Cascade Reach 2

18.2

28.1

710

4.0

Knapweed

17.3

   

Bridge

16.5

   

Cascade Reach 3**

16

14.4

200

7.2

Cascade Reach 4

13.2

24.1

370

6.5

Icicle-Brower

11.6

3.5

190

1.8

Brower

11.5

   

Cascade Reach 5

9.8

32.4

610

5.3

Appendix 2

Summary data for 14 microsatellite loci where Ho and He are observed and expected heterozygosity, and FST is the index of differentiation (S.E. standard error) after Weir and Cockerham (1984). Size range of observed alleles is provided

Locus

Number of alleles

Observed alleles

H o

H e

F ST

(S.E.)

Ocl1

23

150–230

0.815

0.830

0.048

(0.017)

Ogo4

13

115–151

0.708

0.715

0.071

(0.023)

Oke4

22

234–272

0.671

0.680

0.091

(0.040)

Oki23

23

116–204

0.757

0.767

0.063

(0.024)

Omy07

21

234–304

0.812

0.808

0.060

(0.005)

Omy1001

30

172–246

0.819

0.834

0.058

(0.018)

Omy1011

21

118–214

0.820

0.834

0.073

(0.022)

One14

11

146–192

0.482

0.528

0.146

(0.081)

Ots100

27

158–226

0.827

0.876

0.048

(0.017)

Ots3

12

68–94

0.600

0.607

0.094

(0.043)

Ots4

10

105–129

0.712

0.694

0.054

(0.023)

Ssa289

8

105–119

0.551

0.581

0.115

(0.059)

Ssa407

26

159–263

0.836

0.822

0.052

(0.012)

Ssa408

23

165–265

0.819

0.825

0.075

(0.028)

Overall

270

 

0.731

0.743

0.068

(0.006)

Appendix 3

Below diagonal are pairwise F ST values among collections. Bolded values were significantly different from zero (P < 0.0004, adjusted 0.05 level for multiple comparisons). Above diagonal is the number of loci out of 14 that are significantly different at P = 0.05 level

 

Lela

Fren

Solo

Mead

Jack7

Jack7

IceJk7

IceJk8

IceJk9

Hox

Doc

Ida

Joh7

Joh8

Joh9

Knap

Leland

0.000

5

9

11

11

10

4

3

6

3

2

2

2

3

3

2

French

0.030

0.000

11

10

9

12

7

6

3

3

3

3

4

7

7

0

Solomon

0.132

0.096

0.000

2

1

2

8

5

4

8

5

7

4

8

8

4

Meadow

0.159

0.123

0.027

0.000

5

4

8

8

6

9

7

8

9

8

10

7

Jack07

0.067

0.047

0.022

0.040

0.000

0

7

8

2

4

3

7

7

9

9

2

Jack08

0.072

0.052

0.023

0.040

−0.001

0.000

9

10

4

6

4

8

10

10

11

5

IceJk07

0.020

0.013

0.055

0.078

0.018

0.023

0.000

0

2

0

0

1

4

8

8

0

IceJk08

0.019

0.013

0.057

0.083

0.020

0.026

0.000

0.000

1

1

0

0

1

4

7

0

IceJk09

0.038

0.022

0.058

0.081

0.016

0.016

0.010

0.011

0.000

1

0

1

1

1

1

0

Hoxie

0.020

0.011

0.073

0.091

0.023

0.027

0.003

0.001

0.012

0.000

1

0

0

1

1

0

Doctor

0.017

0.015

0.077

0.096

0.032

0.036

0.005

0.003

0.006

0.004

0.000

0

0

0

1

0

Ida

0.014

0.015

0.088

0.098

0.036

0.038

0.007

0.007

0.012

0.000

−0.002

0.000

0

0

0

0

John07

0.021

0.011

0.073

0.092

0.028

0.033

0.006

0.005

0.012

0.000

0.002

−0.001

0.000

0

0

0

 

Brid

Bro7

Bro8

Bro9

Chi7

Chi8

Chi9

Pesh

Gold

Spok

Leland

4

8

7

6

13

12

10

10

14

14

French

5

9

10

8

13

13

11

13

14

14

Solomon

9

10

7

9

10

12

11

12

14

14

Meadow

9

10

9

10

12

12

12

11

14

14

Jack07

7

11

9

9

13

13

13

12

14

14

Jack08

8

12

10

11

13

13

13

12

14

14

IceJk07

4

13

11

12

13

13

13

13

14

14

IceJk08

4

12

10

11

13

13

12

11

14

14

IceJk09

2

5

5

1

10

12

10

9

14

14

Hoxie

0

4

4

4

11

12

11

11

14

14

Doctor

1

1

2

0

11

11

10

9

14

14

Ida

0

1

1

1

9

7

7

8

14

14

John07

0

3

3

3

11

11

9

10

14

14

 

Lela

Fren

Solo

Mead

Jack7

Jack8

IceJk7

IceJk8

IceJk9

Hox

Doc

Ida

Joh7

Joh8

Joh9

Knap

John08

0.025

0.014

0.080

0.101

0.030

0.035

0.009

0.010

0.009

0.004

0.003

0.003

−0.001

0.000

0

0

John09

0.026

0.018

0.079

0.100

0.033

0.036

0.012

0.013

0.010

0.007

0.004

0.004

0.001

0.000

0.000

0

Knap

0.020

0.006

0.073

0.094

0.024

0.028

0.001

0.000

0.005

−0.001

0.000

−0.002

−0.003

0.000

0.005

0.000

Bridge

0.026

0.012

0.084

0.110

0.038

0.042

0.010

0.009

0.013

0.005

0.003

0.006

0.000

0.001

0.000

−0.002

Brow07

0.028

0.017

0.080

0.097

0.037

0.041

0.013

0.014

0.019

0.008

0.007

0.007

0.005

0.006

0.007

0.001

Brow08

0.031

0.021

0.080

0.095

0.039

0.045

0.013

0.015

0.022

0.010

0.008

0.006

0.006

0.006

0.006

0.001

Brow09

0.031

0.019

0.084

0.097

0.037

0.042

0.015

0.015

0.015

0.007

0.009

0.006

0.005

0.007

0.008

0.001

Chiw07

0.054

0.058

0.133

0.149

0.081

0.082

0.053

0.054

0.046

0.046

0.051

0.036

0.039

0.038

0.038

0.040

Chiw08

0.050

0.057

0.131

0.151

0.082

0.084

0.051

0.050

0.046

0.045

0.048

0.039

0.040

0.039

0.041

0.038

Chiw09

0.052

0.062

0.143

0.172

0.088

0.090

0.054

0.055

0.051

0.051

0.055

0.044

0.042

0.041

0.043

0.040

Peshastin

0.053

0.052

0.130

0.142

0.079

0.080

0.050

0.049

0.042

0.043

0.047

0.036

0.034

0.035

0.033

0.034

Goldendale

0.194

0.197

0.288

0.297

0.230

0.236

0.194

0.199

0.205

0.195

0.208

0.186

0.183

0.173

0.177

0.186

Spokane

0.205

0.203

0.275

0.272

0.235

0.242

0.200

0.201

0.210

0.197

0.205

0.183

0.184

0.182

0.184

0.18

 

Brid

Bro7

Bro8

Bro9

Chi7

Chi8

Chi9

Pesh

Gold

Spok

John08

0

5

3

3

12

14

12

11

14

14

John09

0

5

4

4

14

14

11

10

14

14

Knap

0

0

0

0

7

7

6

10

14

14

Bridge

0.000

1

0

1

8

8

6

5

14

14

Brower07

0.000

0.000

0

1

13

14

12

10

14

14

Brower09

0.003

0.001

0.000

0.000

13

13

9

11

14

14

Chiwaukm07

0.029

0.035

0.036

0.032

0.000

2

1

5

14

14

Chiwaukm08

0.028

0.034

0.034

0.031

0.004

0.000

1

5

14

14

Chiwaukm09

0.032

0.036

0.039

0.034

0.008

0.005

0.000

3

14

14

Peshastin

0.026

0.031

0.030

0.027

0.008

0.010

0.013

0.000

14

14

Goldendale

0.188

0.169

0.167

0.165

0.171

0.170

0.179

0.167

0.000

14

Spokane

0.182

0.173

0.169

0.168

0.153

0.156

0.171

0.151

0.141

0.000

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winans, G.A., Gayeski, N. & Timmins-Schiffman, E. All dam-affected trout populations are not alike: fine scale geographic variability in resident rainbow trout in Icicle Creek, WA, USA. Conserv Genet 16, 301–315 (2015). https://doi.org/10.1007/s10592-014-0659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0659-z

Keywords

Navigation