Skip to main content

Advertisement

Log in

Gene trees, species and species trees in the Ctenosaura palearis clade

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The growing use of molecular systematics in conservation has increased the importance of accurate resolution of taxonomic units and relationships. DNA data relate most directly to genealogies, which need not have perfect relationships with species limits and phylogenies. We used a multilocus gene tree approach to elucidate the relationships between four endangered Central American iguanas. We found support for the proposition that the described species taxa correspond to distinct evolutionary lineages warranting individual protection. We combined gene trees to estimate a phylogeny using Bayesian Estimation of Species Trees (BEST), minimizing deep coalescence, Species Trees from Average Ranks (STAR), and traditional concatenation. The estimate from concatenation conflicted with the other methods, likely owing to the disproportionate effect of mtDNA on concatenated analyses. This illustrates the importance of appropriate treatment of multilocus sequence data in phylogenetics. Our results indicate that these species have gone through recent and rapid speciation, resulting in four closely related narrow-range endemics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agapow PM, Bininda-Edmonds ORP, Crandall KA, Gittleman JL, Mace GM, Marshall JC, Purvis A (2004) The impact of species concept on biodiversity studies. Q Rev Biol 79:161–179

    Article  PubMed  Google Scholar 

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell Publishing, Oxford

    Google Scholar 

  • Avise J (1989) A role for molecular-genetics in the recognition and conservation of endangered species. Trends Ecol Evol 4:279–281

    Article  CAS  PubMed  Google Scholar 

  • Avise JC, Ball RM (1990) Principles of genealogical concordance in species concepts and biological taxonomy. Oxford surveys in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Baum DA, Shaw KL (1995) Genealogical perspectives on the species problem. In Hoch PC, Stephenson AG (eds) Experimental and molecular approaches to plant biosystematics. Missouri Botanic Garden, St. Louis, pp 289–303

  • Buckley LJ (1997) Phylogeny and evolution of the genus Ctenosaura (Squamata: Iguanidae). Dissertation, Southern Illinois University, Carbondale

  • Buckley LJ, Axtell RW (1997) Evidence for specific status of the Honduran lizards formally referred to as Ctenosaura palearis (Reptilia: Squamata: Iguanidae). Copeia 1997:138–150

    Article  Google Scholar 

  • Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford DL, Waddell PJ (1993) Partitioning and combining data in phylogenetic analysis. Syst Biol 42:384–397

    Article  Google Scholar 

  • Carroll RL (1988) Vertebrate paleontology and evolution. W.H. Freeman, NY

    Google Scholar 

  • Coti P, Ariano D (2008) Ecology and traditional use of the Guatemalan Black Iguana (Ctenosaura palearis) in the dry forests of the Motagua Valley, Guatemala. IGUANA 3:142–149

    Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  • de Queiroz K (1987) A new Spiny-Tailed iguana from Honduras, with comments on relationships within Ctenosaura (Squamata: Iguania). Copeia 1987:892–902

    Article  Google Scholar 

  • de Queiroz A (1993) For consensus (sometimes). Syst Biol 42:369–372

    Article  Google Scholar 

  • de Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886

    Article  PubMed  Google Scholar 

  • de Queiroz A, Donoghue MJ, Kim J (1995) Separate versus combined analysis of phylogenetic evidence. Annu Rev Ecol Syst 26:657–681

    Article  Google Scholar 

  • Degnan JH, Rosenberg NA (2006) Discordance of species trees with their most likely gene trees. PLoS Genet 2:762–768

    Article  CAS  Google Scholar 

  • Degnan JH, Salter LA (2005) Gene tree distributions under the coalescent process. Evolution 59:24–37

    Article  PubMed  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214–221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Echternacht AC (1968) Distributional and ecological notes on some reptiles from northern Honduras. Herpetologica 24:151–158

    Google Scholar 

  • Edwards SV (2009) Is a new and general theory of molecular systematics emerging? Evolution 63:1–19

    Article  CAS  PubMed  Google Scholar 

  • Edwards SV, Beerli P (2000) Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54:1839–1854

    CAS  PubMed  Google Scholar 

  • Edwards SV, Liu L, Pearl DK (2007) High resolution species trees without concatenation. Proc Natl Acad Sci USA 104:5936–5941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estes R, Price LI (1973) Iguanid lizard from upper Cretaceous of Brazil. Science 180:748–751

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    Article  CAS  Google Scholar 

  • Fallon SM (2007) Genetic data and the listing of species under the US endangered species act. Conserv Biol 21:1186–1195

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence-limits on phylogenies–an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinaur, Sunderland

    Google Scholar 

  • Forister ML, Nice CC, Fordyce JA, Gompert Z, Shapiro AM (2008) Considering evolutionary processes in the use of single-locus genetic data for conservation, with examples from the Lepidoptera. J Insect Conserv 12:37–51

    Article  Google Scholar 

  • Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423

    Article  Google Scholar 

  • Goldman N, Anderson JP, Rodrigo AG (2000) Likelihood-based tests of topologies in phylogenetics. Syst Biol 49:652–670

    Article  CAS  PubMed  Google Scholar 

  • Gutsche A (2005) Distribution and habitat utilization of Ctenosaura bakeri on Utila. IGUANA 12:143–151

    Google Scholar 

  • Gutsche A, Köhler F (2008) Phylogeography and hybridization in Ctenosaura species (Sauria: Iguanidae) from Caribbean Honduras: insights from mitochondrial and nuclear DNA. Zoosyst Evol 84:253–261

    Article  Google Scholar 

  • Gutsche A, Streich WJ (2009) Demography and endangerment of the Utila island spiny tailed iguana, Ctenosaura bakeri. J Herpetol 43:105–113

    Article  Google Scholar 

  • Herbert PDN, Cywinska A, Ball SL, DeWaard JR (2003a) Biological identification through DNA barcodes. Proc Natl Acad Sci USA 270:313–321

    Google Scholar 

  • Herbert PDN, Ratnasingham S, deWaard JR (2003b) Barcoding animal life: cytochrome C oxidase subunit 1 divergences among closely related species. Proc Natl Acad Sci USA 270:S96–S99

    Google Scholar 

  • Hickerson M, Meyer C, Moritz C (2006) DNA barcoding will often fail to discover new animal species over broad parameter space. Syst Biol 55:729–739

    Article  PubMed  Google Scholar 

  • Hudson R, Coyne JA (2002) Mathematical consequences of the genealogical species concept. Evolution 56:1557–1565

    Article  PubMed  Google Scholar 

  • Huelsenbeck JP (1994) Is character weighting a panacea for the problem of data heterogeneity in phylogenetic analysis. Syst Biol 43:288–291

    Article  Google Scholar 

  • Irwin DE (2002) Phylogeographic breaks without geographic barriers to gene flow. Evolution 56:2383–2394

    Article  PubMed  Google Scholar 

  • Isaac NJB, Mallet J, Mace GM (2004) Taxonomic inflation: its influence on macroecology and conservation. Trends Ecol Evol 19:464–469

    Article  PubMed  Google Scholar 

  • Karl SA, Bowen BW (1999) Evolutionary significant units versus geopolitical taxonomy: molecular systematics of an Endangered sea turtle (genus Chelonia). Conserv Biol 13:990–999

    Article  Google Scholar 

  • Kishino H, Miyata T, Hasegawa M (1990) Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol 31:151–160

    Article  CAS  Google Scholar 

  • Knowles LL, Carstens BC (2007) Delimiting species without monophyletic gene trees. Syst Biol 56:887–895

    Article  PubMed  Google Scholar 

  • Köhler G (1995) Freilanduntersuchungen zur morphologie und ˆkologie von Ctenosaura bakeri and C. oedirhina auf den Islas de la Bahia, Honduras, mit bemerkunen zur schutzproblematik. Salamandra Rheinbach 31:93–106

    Google Scholar 

  • Köhler G (2000) Systematics of the Ctenosaura group of lizards (Reptilia: Sauria: Iguanidae). Amphib-reptil 21:177–191

    Article  Google Scholar 

  • Köhler G (2003) The reptiles of Central America. Herpeton, Verlag Elke Köhler, Offenbach

    Google Scholar 

  • Lande R, Arnold SJ (1983) The measure of selection on correlated characters. Evolution 37:1210–1226

    Article  PubMed  Google Scholar 

  • Liu L (2008) BEST: Bayesian estimation of species trees under the coalescent model. Bioinformatics 24:2542–2543

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Pearl DK (2007) Species trees from gene trees: reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Syst Biol 56:504–514

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Yu L (2007) Phybase: phylogenetic analysis of multilocus sequences in R. http://www.stat.osu.edu/~liuliang/research/phybase.html

  • Liu L, Pearl DK, Brunfield RT, Edwards SV (2008) Estimating species trees using multiple-allele DNA sequence data. Evolution 62:2080–2091

    Article  PubMed  Google Scholar 

  • Liu L, Yu LL, Pearl DK, Edwards SV (2009) Estimating species phylogenies using coalescence times among sequences. Syst Biol 58:468–477

    Article  CAS  PubMed  Google Scholar 

  • Longmire JL, Gee GF, Hardekopf CL, Mark GA (1992) Establishing paternity in whooping cranes (Grus americana) by DNA analysis. Auk 109:522–529

    Google Scholar 

  • Maddison WP (1997) Gene trees in species trees. Syst Biol 46:523–536

    Article  Google Scholar 

  • Maddison DR, Maddison WP (2005) MacClade 4 release version 4.07 for OSX. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. Version 2.6. http://mesquiteproject.org

  • Malone CL, Wheeler T, Tayloe JF, Davis SK (2000) Phylogeography of the Caribbean Rock Iguana (Cyclura): implications for conservation and insights on the biogeographic history of the West Indies. Mol Phylogenet Evol 17:269–279

    Article  CAS  PubMed  Google Scholar 

  • McCranie JR, Wilson LD, Kohler G (2005) Amphibians and reptiles of the Bay Islands and Cayos Cochinos, Honduras. Bibliomania!, Salt Lake City

    Google Scholar 

  • Niemiller ML, Fitzpatrick BM, Miller BT (2008) Recent divergence with gene flow in Tennessee cave salamanders (Plethodontidae: Gyrinophilus) inferred from gene genealogies. Mol Ecol 17:2258–2275

    Article  CAS  PubMed  Google Scholar 

  • Nigel J, Avise JC (1986) Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. In: Nevo E, Karlin S (eds) Evolutionary processes and theory. Academic Press, New York, pp 515–534

    Chapter  Google Scholar 

  • Nordborg M (2001) Coalescent theory. In: Balding D, Bishop M, Cannings C (eds) Handbook of statistical genetics. Wiley, Chichester, pp 179–212

    Google Scholar 

  • O’Brien SJ, Mayr E (1991) Bureaucratic mischief: recognizing endangered species and subspecies. Science 251:1187–1188

    Article  PubMed  Google Scholar 

  • Page RDM, Charleston MA (1997) From gene to organismal phylogeny: reconciled trees and gene trees/species tree problem. Mol Phylogenet Evol 7:231–240

    Article  CAS  PubMed  Google Scholar 

  • Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5:568–583

    CAS  PubMed  Google Scholar 

  • Pasachnik SA, Fitzpatrick BM, Near TJ, Echternacht AC (2008) Gene flow between an endangered endemic iguana, and its wide spread relative, on the island of Utila, Honduras: when is hybridization a threat? Conserv Genet 10:1247–1254

    Article  Google Scholar 

  • Peterson AT, Navarro-Siguenza AG (1999) Alternative species concepts as bases for determining priority conservation areas. Conserv Biol 13:427–431

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Price T (2008) Speciation in birds. Roberts and Company, Greenwood Village

    Google Scholar 

  • Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112:183–198

    Article  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetics inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg NA (2002) The probability of topological concordance of gene trees and species trees. Theor Popul Biol 61:225–247

    Article  PubMed  Google Scholar 

  • Saint KM, Austin CC, Donellan SC, Hutchinson MN (1998) C-mos, a nuclear marker useful for squamate phylogenetics analysis. Mol Phylogenet Evol 10:259–263

    Article  CAS  PubMed  Google Scholar 

  • Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 19:101–109

    Article  CAS  PubMed  Google Scholar 

  • Schluter D, Smith JNM (1986) Genetic and phenotypic correlations in a natural-population of song sparrows. Biol J Linn Soc 29:23–36

    Article  Google Scholar 

  • Shaffer HB, Thomson RC (2007) Delimiting species in recent radiations. Syst Biol 56:896–906

    Article  CAS  PubMed  Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116

    Article  CAS  Google Scholar 

  • Sites JW Jr, Crandall KA (1997) Testing species boundaries in biodiversity studies. Conserv Biol 11:1289–1297

    Article  Google Scholar 

  • Sites JW, Marshall JC (2003) Delimiting species: a Renaissance issue in systematic biology. Trends Ecol Evol 18:462–470

    Article  Google Scholar 

  • Sites JW, Marshall JC (2004) Operational criteria for delimiting species. Ann Rev Ecol Evol Syst 35:199–227

    Article  Google Scholar 

  • Slatkin M, Maddison WP (1989) A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics 123:603–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stejneger L (1899) Description of a new species of spiny-tailed iguana from Guatemala. Proc US Nat Mus 21:381–383

    Article  Google Scholar 

  • Stejneger L (1901) On a new species of spiny-tailed iguana from Utila Island, Hondruas. Proc US Nat Mus 23:467–468

    Article  Google Scholar 

  • Stockman AK, Bond JE (2007) Delimiting cohesion species: extreme population structuring and the role of ecological interchangeability. Mol Ecol 16:3374–3392

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0. Sinauer Associates, Sutherland

    Google Scholar 

  • Takahata N (1989) Gene genealogy in 3 related populations—consistency probability between gene and population trees. Genetics 122:957–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toscano MA, Macintrye IG (2003) Corrected western Atlantic sea-level curve for the last 11,000 years based on calibrated 14C dates form Acropora palmata framework and intertidal mangrove peat. Coral Reefs 22:257–270

    Article  Google Scholar 

  • Wakeley J (1996) The variance of pairwise nucleotide differences in two populations with migration. Theor Popul Biol 49:39–57

    Article  CAS  PubMed  Google Scholar 

  • Wakeley J (2008) Coalescent theory: an introduction. Roberts & Company Publishers, Greenwood Village

    Google Scholar 

  • Weins JJ, Penkrot TA (2002) Delimiting species using DNA and morphological variation and discordant species limits in Spiny Lizards (Sceloporus). Syst Biol 51:69–91

    Article  Google Scholar 

  • Wu CI (1991) Inferences of species phylogeny in relation to segregation of ancient polymorphisms. Genetics 127:429–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarza E, Reynoso VH, Emerson BC (2008) Diversification in the northern neotropics: mitochondrial and nuclear DNA phylogeography of the iguana Ctenosaura pectinata and related species. Mol Evol 17:3259–3275

    CAS  Google Scholar 

Download references

Acknowledgements

This study would not have been possible without the help of many dedicated volunteers: Dennis Baulechner, Edoardo Antunez Pineda, Gilberto Salazar, Paola Coti, Daniel Ariano, Corey Shaffer, Jeff Liechty, Wendy Naira, Melissa Issis Medina, Sammy Nuñez, Hadas Grushka, and Jeffery Corneil, many thoughtful discussions with John Iverson, James Fordyce and Sally Horn, C. Hulsey for the image of Central America used in Fig. 1, The Bay Island Foundation (formally the Iguana Research and Breeding Station) and its incredibly helpful staff, Organización Zootropic, the Overseas Research Station on Roatan and David Evans, the Cayos Cochinos Foundation, the many offices of AFE-COHDEFOR and CONAP, the multitude of local residents and guides, and grants to SAP from Sigma Xi and the International Iguana Foundation, and the Department of Ecology and Evolutionary Biology of the University of Tennessee, Knoxville. All procedures were approved by the University of Tennessee, Knoxville, Institutional Animal Care and Use Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stesha A. Pasachnik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasachnik, S.A., Echternacht, A.C. & Fitzpatrick, B.M. Gene trees, species and species trees in the Ctenosaura palearis clade. Conserv Genet 11, 1767–1781 (2010). https://doi.org/10.1007/s10592-010-0070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-010-0070-3

Keywords

Navigation