Skip to main content

Advertisement

Log in

Considering evolutionary processes in the use of single-locus genetic data for conservation, with examples from the Lepidoptera

  • Original Paper
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

The increasing popularity of molecular taxonomy will undoubtedly have a major impact on the practice of conservation biology. The appeal of such approaches is undeniable since they will clearly be an asset in rapid biological assessments of poorly known taxa or unexplored areas, and for discovery of cryptic biodiversity. However, as an approach for diagnosing units for conservation, some caution is warranted. The essential issue is that mitochondrial DNA variation is unlikely to be causally related to, and thus correlated with, ecologically important components of fitness. This is true for DNA barcoding, molecular taxonomy in general, or any technique that relies on variation at a single, presumed neutral locus. Given that natural selection operates on a time scale that is often much more rapid than the rates of mutation and allele frequency changes due to genetic drift, neutral genetic variation at a single locus can be a poor predictor of adaptive variation within or among species. Furthermore, reticulate processes, such as introgressive hybridization, may also constrain the utility of molecular taxonomy to accurately detect significant units for conservation. A survey of published genetic data from the Lepidoptera indicates that these problems may be more prevalent than previously suspected. Molecular approaches must be used with caution for conservation genetics which is best accomplished using large sample sizes over extensive geography in addition to data from multiple loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aagaard K, Hindar K, Pullin AS, James CH, Hammarstedt O, Balstad T, Hanssen O (2002) Phylogenetic relationships in brown argus butterflies (Lepidoptera:Lycaenidae: Aricia) from north-western Europe. Biol J Linn Soc 75:27–37

    Google Scholar 

  • Agapow PM, Bininda-Emonds ORP, Crandall KA, Gittleman JL, Mace GM, Marshall JC, Purvis A (2004) The impact of species concept on biodiversity studies. Q Rev Biol 79:161–179

    PubMed  Google Scholar 

  • Avise JC (1989) A role for molecular-genetics in the recognition and conservation of endangered species. Trends Ecol Evol 4:279–281

    Google Scholar 

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New York

    Google Scholar 

  • Baker CS, Cipriano F, Palumbi SR (1996) Molecular genetic identification of whale and dolphin products from commercial markets in Korea and Japan. Mol Ecol 5:671–685

    CAS  Google Scholar 

  • Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744

    PubMed  Google Scholar 

  • Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annu Rev Ecol Syst 16:113–148

    Google Scholar 

  • Beccaloni GW, Gaston KJ (1995) Predicting the species richness of neotropical forest butterflies: Ithomiinae (Lepidoptera: Nymphalidae) as indicators. Biol Conserv 71:77–86

    Google Scholar 

  • Bogdanowicz SM, Schaefer PW, Harrison RG (2000) Mitochondrial DNA variation among worldwide populations of gypsy moths, Lymantria dispar. Mol Phylogenet Evol 15:487–495

    PubMed  CAS  Google Scholar 

  • Bowen BW (1998) What is wrong with ESUs? The gap between evolutionary theory and conservation principles. J Shellfish Res 17:1355–1358

    Google Scholar 

  • Bowen BW (1999) Preserving genes, species, or ecosystems? Healing the fractured foundations of conservation policy. Mol Ecol 8:S5–S10

    PubMed  CAS  Google Scholar 

  • Brower AVZ (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial-DNA evolution. Proc Natl Acad Sci USA 91:6491–6495

    PubMed  CAS  Google Scholar 

  • Brower AVZ (1996) A new mimetic species of Heliconius (Lepidoptera: Nymphalidae), from southeastern Colombia, as revealed by cladistic analysis of mitochondrial DNA sequences. Zool J Linn Soc 116:317–332

    Google Scholar 

  • Brower AVZ (2006) Problems with DNA barcodes for species delimination: “ten species” of Astraptes fulgerator reassessed (Lepidoptera: Hesperiidae). System Biodivers 4:127–132

    Google Scholar 

  • Brower AVZ, DeSalle R (1994) Practical and theoretical considerations for choice of a DNA sequence region in insect molecular systematics, with a short review of published studies using nuclear gene regions. Ann Entomol Soc Am 87:702–716

    CAS  Google Scholar 

  • Brower AVZ, Jeansonne MM (2004) Geographical populations and “subspecies” of new world monarch butterflies (Nymphalidae) share a recent origin and are not phylogenetically distinct. Ann Entomol Soc Am 97:519–523

    Google Scholar 

  • Brower AVZ, DeSalle R, Vogler A (1996) Gene trees, species trees and systematics: a cladistic perspective. Annu Rev Ecol Syst 27:423–450

    Google Scholar 

  • Caterino MS, Sperling FAH (1999) Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes. Mol Phylogen Evol 11:122–137

    CAS  Google Scholar 

  • Cech R, Tudor G (2005) Butterflies of the East Coast: an observer’s guide. Princeton University Press, Princeton NJ

    Google Scholar 

  • Chan KMA, and Levin SA (2005) Leaky prezygotic isolation and porous genomes: rapid introgression of maternally inherited DNA. Evolution 59:720–729

    PubMed  CAS  Google Scholar 

  • Cognato AI (2006) Standard percent DNA sequence difference for insects does not predict species boundaries. J Econ Entomol 99:1037–1045

    Article  PubMed  CAS  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates

  • Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295

    PubMed  Google Scholar 

  • Cremene C, Groza G, Rakosy L, Schileyko AA, Baur A, Erhardt A, Baur B (2005) Alterations of steppe-like grasslands in Eastern Europe: a threat to regional biodiversity hotspots. Conserv Biol 19:1606–1618

    Google Scholar 

  • Dasmahapatra KK, Blum MJ, Aiello A, Hackwell S, Davies N, Bermingham EP, Mallett T (2002) Inferences from a rapidly moving hybrid zone. Evolution 56:741–753

    PubMed  Google Scholar 

  • Degnan JH, Rosenberg NA (2006) Discordance of species trees with their most likely gene trees. Pub Lib Sci Genet 2:762–768

    CAS  Google Scholar 

  • DeSalle R, Birstein VJ (1996) PCR identification of black caviar. Nature 381:197–198

    CAS  Google Scholar 

  • Donnellan SC, Aplin KP (1989) Resolution of cryptic species in the New Guinean lizard Sphenomorphus jobiensis (Scincidae) by electrophroesis. Copeia 1:81–88

    Google Scholar 

  • Doyle JJ (1992) Gene trees and species trees: molecular systematics as one-character taxonomy. Syst Bot 17:144–163

    Google Scholar 

  • Eastwood R, Hughes JM (2003) Phylogeography of the rare myrmecophagous butterfly Acrodipsas cuprea (Lepidoptera: Lycaenidae) from pinned museum specimens. Aust J Zool 51:331–340

    Google Scholar 

  • Excoffier L, Heckel G (2006) Computer programs for population genetics data analysis: a survival guide. Nat Rev Genet 7:745–758

    PubMed  CAS  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Inc Sunderland MA

    Google Scholar 

  • Fordyce JA, Nice CC (2003) Contemporary patterns in a historical context: phylogeographic history of the pipevine swallowtail, Battus philenor (Papilionidae). Evolution 57:1089–1099

    PubMed  Google Scholar 

  • Forister ML (2005) Independent inheritance of preference and performance in hybrids between host races of Mitoura butterflies (Lepidoptera: Lycaenidae). Evolution 59:1149–1155

    PubMed  Google Scholar 

  • Forister ML, Fordyce JA, Shapiro AM (2004) Geological barriers and restricted gene flow in the holarctic skipper Hesperia comma (Hesperiidae). Mol Ecol 13:3489–3499

    PubMed  CAS  Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752

    PubMed  CAS  Google Scholar 

  • Freeland JR (2005) Molecular ecology. John Wiley & Sons Ltd, West Sussex England

    Google Scholar 

  • Funk DJ (1998) Isolating a role for natural selection in speciation: host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles. Evolution 52:1744–1759

    Google Scholar 

  • Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: Frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423

    Google Scholar 

  • Gaston KJ, David R (1994) Hotspots across Europe. Biodivers Lett 2:108–116

    Google Scholar 

  • Goldstein PZ, DeSalle R, Amato G, Vogler AP (2000) Conservation genetics at the species boundary. Conserv Biol 14:120–131

    Google Scholar 

  • Gompert Z, Nice CC, Fordyce JA, Forister ML, Shapiro AM (2006) Identifying units for conservation using molecular taxonomy: the cautionary tale of the Karner blue butterfly. Mol Ecol 15:1759–1768

    PubMed  CAS  Google Scholar 

  • Good DA (1989) Hybridization and cryptic species in Dicamptodon (Caudata: Dicamptodontidae). Evolution 43:728–744

    Google Scholar 

  • Grady JM, Quattro JM (1999) Using character concordance to define taxonomic and conservation units. Conserv Biol 13:1004–1007

    Google Scholar 

  • Grapputo A, Kumpulainen T, Mappes J (2005) Phylogeny and evolution of parthenogenesis in Finnish bagworm moth species (Lepidoptera: Psychidae: Naryciinae) based on mtDNA-markers. Ann Zool Fenn 42:141–160

    Google Scholar 

  • Grant BR, Grant PR (1993) Evolution of Darwin’s finches caused by a rare climatic event. Proc R Soc Lond B Biol Sci 251:111–117

    Google Scholar 

  • Greenstone MH, Rowley DL, Heimbach U, Lundgren JG, Pfannenstiel RS, Rehner SA (2005) Barcoding generalist predators by polymerase chain reaction: carabids and spiders. Mol Ecol 14:3247–3266

    PubMed  CAS  Google Scholar 

  • Grill A, Gkiokia E, Alvarez N (2006) Evolutionary history and patterns of differentiation among European Maniola butterflies (Lepidoptera: Satyrinae). Eur J Entomol 103:613–618

    Google Scholar 

  • Groman JD, Pellmyr O (2000) Rapid evolution and specialization following host colonization in a yucca moth. J Evol Biol 13:223–236

    CAS  Google Scholar 

  • Haig SM (1998) Molecular contributions to conservation. Ecology 79:413–425

    Article  Google Scholar 

  • Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Nat Acad Sci USA 103:968–971

    PubMed  Google Scholar 

  • Haldane JBS (1922) Sex-ratio and unisexual sterility in hybrid animals. J Genet 12:101–109

    Google Scholar 

  • Hall JPW, DJ Harvey (2002) The phylogeography of Amazonia revisited: new evidence from Riodinid butterflies. Evolution 56:1489–1497

    PubMed  Google Scholar 

  • Harrison RG (1989) Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Tree 4:6–11

    Google Scholar 

  • Harrison RG (1998) Linking evolutionary pattern and process: the relevance of species concepts for the study of speciation. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, Oxford, pp 19–31

    Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321

    CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol 270:S96–S99

    CAS  Google Scholar 

  • Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004a) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817

    CAS  Google Scholar 

  • Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004b) Identification of birds through DNA barcodes. Pub Lib Sci Biol 2:1657–1663

    CAS  Google Scholar 

  • Hein J, Schierup MH, Wiuf C (2005) Gene genealogies, variation and evolution: a primer in coalescent theory. Oxford University Press, New York

    Google Scholar 

  • Hey J (2001) The mind of the species problem. Trends Ecol Evol 16:326–329

    PubMed  Google Scholar 

  • Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hoang A, Hill CE, Beerli P, Kingsolver JG (2001) Strength and tempo of directional selection in the wild. Proc Natl Acad Sci USA 98:9157–9160

    PubMed  CAS  Google Scholar 

  • Hoelzer GA (1997) Inferring phylogenies from MTDNA variation: mitochondrial-gene trees versus nuclear-gene trees revisited. Evolution 51:622–626

    Google Scholar 

  • Hudson RR (1990) Gene genealogies and the coalescent process. Oxford Surveys Evol Biol 7:1–44

    Google Scholar 

  • Hurst GDD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc R Soc Lond B 272:1525–1534

    CAS  Google Scholar 

  • Irwin DE (2002) Phylogeographic breaks without geographic barriers to gene flow. Evolution 56:2383–2394

    PubMed  Google Scholar 

  • Jiggins FM (2003) Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164:5–12

    PubMed  CAS  Google Scholar 

  • Jiggins CD, McMillan WO, King P, Mallet J (1997) The maintenance of species differences across a Heliconius hybrid zone. Heredity 79:495–505

    CAS  Google Scholar 

  • Jiggins CD, Naisbit RE, Coe RL, Mallet J (2001) Reproductive isolation caused by colour pattern mimicry. Nature 411:302–305

    PubMed  CAS  Google Scholar 

  • Kaila L, Stahls G (2006) DNA barcodes: evaluating the potential of COI to diffentiate closely related species of Elachista (Lepidoptera: Gelechioidea: Elachistidae) from Australia. Zootaxa:1–26

  • Kato Y, Yagi T (2004) Biogeography of the subspecies of Parides (Byasa) alcinous (Lepidoptera: Papilionidae) based on a phylogenetic analysis of mitochondrial ND5 sequences. Syst Entomol 29:1–9

    Google Scholar 

  • Kingman JFC (2000) Origins of the coalescent: 1974–1982. Genetics 156:1461–1463

    PubMed  CAS  Google Scholar 

  • Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE, Hoang A, Gibert P, Beerli P (2001) The strength of phenotypic selection in natural populations. Am Nat 157:245–261

    PubMed  CAS  Google Scholar 

  • Kremen C (1992) Assessing the indicator properties of species assemblages for natural areas monitoring. Ecol Appl 2:203–217

    Google Scholar 

  • Kronforst MR, Young LG, Blume LM, Gilbert LE (2006) Multilocus analyses of admixture and introgression among hybridizing Heliconius butterflies. Evolution 60:1254–1268

    PubMed  CAS  Google Scholar 

  • Kruse JJ, Sperling FAH (2001) Molecular phylogeny within and between species of the Archips argyrospila complex (Lepidoptera : Tortricidae). Ann Entomol Soc Am 94:166–173

    Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226

    Google Scholar 

  • Landry B, Powell JA, Sperling FAH (1999) Systematics of the Argyrotaenia franciscana (Lepidoptera: Tortricidae) species group: evidence from mitochondrial DNA. Ann Entomol Soc Am 92:40–46

    CAS  Google Scholar 

  • Lushai G, Allen JA, Goulson D, MacLean N, Smith DAS (2005) The butterfly Danaus chrysippus (L) in East Africa comprises polyphyletic, sympatric lineages that are, despite behavioural isolation, driven to hybridization by female-biased sex ratios. Biol J Linn Soc 86:117–131

    Google Scholar 

  • Lowe A, Harris S, Ashton P (2004) Ecological genetics: design, analysis, and application. Blackwell Science Ltd, Malden MA

    Google Scholar 

  • Ludwig A (2006) A sturgeon view on conservation genetics. Eur J Wildl Res 52:3–8

    Google Scholar 

  • Maddison WP (1997) Gene trees in species trees. Syst Biol 46:523–536

    Google Scholar 

  • Mallarino R, Bermingham E, Willmott KR, Whinnett A, Jiggins CD (2005) Molecular systematics of the butterfly genus Ithomia (Lepidoptera: Ithomiinae): a composite phylogenetic hypothesis based on seven genes. Mol Phylogen Evol 34:625–644

    CAS  Google Scholar 

  • Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237

    PubMed  Google Scholar 

  • Meyer CP, G Paulay (2005) DNA barcoding: error rates based on comprehensive sampling. Pub Lib Sci Biol 3:2229–2238

    CAS  Google Scholar 

  • Miller KB, Alarie Y, Wolfe GW, Whiting MF (2005) Association of insect life stages using DNA sequences: the larvae of Philodytes umbrinus (Motschulsky) (Coleoptera: Dytiscidae). Syst Entomol 30:499–509

    Google Scholar 

  • Mullen SP (2006) Wing pattern evolution and the origins of mimicry among North American admiral butterflies (Nymphalidae: Limenitis). Mol Phylogen Evol 39:747–758

    CAS  Google Scholar 

  • Moore WS (1995) Inferring phylogenies from MTDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49:718–726

    Google Scholar 

  • Moore WS (1997) Mitochondrial-gene trees versus nuclear-gene trees, a reply to Hoelzer. Evolution 51:627–629

    Google Scholar 

  • Moritz C (1994) Defining evolutionarily significant units for conservation. Trends Ecol Evol 9:373–375

    Google Scholar 

  • Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254

    PubMed  Google Scholar 

  • Nagel L, Schluter D (1998) Body size, natural selection, and speciation in sticklebacks. Evolution 52:209–218

    Google Scholar 

  • Naisbit RE, Jiggins CD, Mallet J (2001) Disruptive sexual selection against hybrids contributes to speciation between Heliconius cydno and H. melpomene. Proc R Soc Lond B 268:1849–1854

    CAS  Google Scholar 

  • Narita S, Nomura M, Kato Y, Fukatsu T (2006) Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: evolutionary and biogeographical implications. Mol Ecol Online

  • Neigel JE, Avise JC (1986) Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. In: Nevo E, Karlin S (eds), Evolutionary processes and theory. Academic Press, New York

    Google Scholar 

  • Nice CC, Shapiro AM (1999) Molecular and morphological divergence in the butterfly genus Lycaeides (Lepidoptera: Lycaenidae) in North America: evidence of recent speciation. J Evol Biol 12:936–950

    CAS  Google Scholar 

  • Nice CC, Shapiro AM (2001a) Patterns of morphological, biochemical, and molecular evolution in the Oeneis chryxus complex (Lepidoptera: Satyridae): a test of historical biogeographical hypotheses. Mol Phylogen Evol 20:111–123

    CAS  Google Scholar 

  • Nice CC, Shapiro AM (2001b) Population genetic evidence of restricted gene flow between host races in the butterfly genus Mitoura (Lepidoptera: Lycaenidae). Ann Entomol Soc Am 94:257–267

    Google Scholar 

  • Noss RF (1996) The naturalists are dying off. Conserv Biol 10:1–3

    Google Scholar 

  • Omland KE, Tarr CL, Boarman WI, Marzluff JM, Fleischer RC (2000) Cryptic genetic variation and paraphyly in ravens. Proc R Soc Lond B Biol Sci 267:2475–2482

    CAS  Google Scholar 

  • Orr MR, Smith TB (1998) Ecology and speciation. Trends Ecol Evol 13:502–506

    Google Scholar 

  • Ounap E, Viidalepp J, Saarma U (2005) Phylogenetic evaluation of the taxonomic status of Timandra griseata and T. comae (Lepidoptera: Geometridae: Sterrhinae). Eur J Entomol 102:607–615

    CAS  Google Scholar 

  • Paetkau D (1999) Using genetics to identify intraspecific conservation units: a critique of current methods. Conserv Biol 13:1507–1509

    Google Scholar 

  • Palumbi SR, Cipriano F (1998) Species identification using genetic tools: the value of nuclear and mitochondrial gene sequences in whale conservation. J Hered 89:459–464

    PubMed  CAS  Google Scholar 

  • Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5:568–583

    PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45

    PubMed  Google Scholar 

  • Presgraves DC (2002) Patterns of postzygotic isolation in Lepidoptera. Evolution 56: 1168–1183

    PubMed  Google Scholar 

  • Purvis A, Gittleman JL, Brooks T (eds) (2005) Phylogeny and conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Ramsey J, Bradshaw HD, Schemske DW (2003) Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution 57:1520–1534

    PubMed  Google Scholar 

  • Rand DB, Heath A, Suderman T, Pierce NE (2000) Phylogeny and life history evolution of the genus Chrysoritis within the Aphnaeini (Lepidoptera: Lycaenidae), inferred from mitochondrial cytochrome oxidase I sequences. Mol Phylogen Evol 17:85–96

    CAS  Google Scholar 

  • Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112–113: 183–198

    PubMed  Google Scholar 

  • Rubinoff D (2006) Utility of mitochondrial DNA barcodes in species conservation. Conserv Biol 20:1026–1033

    PubMed  Google Scholar 

  • Rubinoff D, Sperling FAH (2004) Mitochondrial DNA sequence, morphology and ecology yield contrasting conservation implications for two threatened buckmoths (Hemileuca: Saturniidae). Biol Conserv 118:341–351

    Google Scholar 

  • Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352

    Google Scholar 

  • Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10

    Google Scholar 

  • Schluter D, Smith JNM (1986) Natural selection on beak and body size in the song sparrow. Evolution 40:221–231

    Google Scholar 

  • Segraves KA, Althoff DM, Pellmyr O (2005) Limiting cheaters in mutualism: evidence from hybridization between mutualist and cheater yucca moths. Proc R Soc Lond B Biol Sci 272:2195–2201

    Google Scholar 

  • Sperling FAH (1993) Mitochondrial DNA variation and Haldane’s rule in the Papilio glaucus and Papilio troilus species groups. Heredity 71:227–233

    CAS  Google Scholar 

  • Sperling FAH (2003a) DNA barcoding: Deus ex machina. Newsl Biol Survey Can 22:50–53

    Google Scholar 

  • Sperling FAH (2003b) Butterfly molecular systematics: from species definitions to higher-level systematics. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterflies, ecology and evolution taking flight. Univ. Chicago Press, Chicago, pp 431–458

    Google Scholar 

  • Sperling FAH, Hickey DA (1994) Mitochondrial DNA sequence variation in the spruce budworm species complex (Choristoneura: Lepidoptera). Mol Biol Evol 11:656–665

    PubMed  CAS  Google Scholar 

  • Sperling FAH, Anderson GS, Hickey DA (1994) A DNA-based approach to the identification of insect species used for postmortem interval estimation. J Forensic Sci 39:418–427

    PubMed  CAS  Google Scholar 

  • Sperling FAH, Byers R, Hickey D (1996) Mitochondrial DNA sequence variation among pheromotypes of the dingy cutworm, Feltia jaculifera (Gn) (Lepidoptera: Noctuidae). Can J Zool Rev Can Zool 74:2109–2117

    Article  CAS  Google Scholar 

  • Sperling FAH, Landry JF, Hickey DA (1995) DNA-based identification of introduced ermine moth species in North America (Lepidoptera, Yponomeutidae). Ann Entomol Soc Am 88:155–162

    CAS  Google Scholar 

  • Sperling FAH, Raske AG, Otvos IS (1999) Mitochondrial DNA sequence variation among populations and host races of Lambdina fiscellaria (Gn) (Lepidoptera: Geometridae). Insect Mol Biol 8:97–106

    PubMed  CAS  Google Scholar 

  • Streiff R, Veyrier R, Audiot P, Meusnier S, Brouat C (2005) Introgression in natural populations of bioindicators: a case study of Carabus splendens and Carabus punctatoauratus. Mol Ecol 14:3775–3786

    PubMed  CAS  Google Scholar 

  • Svensson GP, Althoff DM, Pellmyr O (2005) Replicated host-race formation in bogus yucca moths: genetic and ecological divergence of Prodoxus quinquepunctellus on yucca hosts. Evol Ecol Res 7:1139–1151

    Google Scholar 

  • Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates, Sunderland Mass, pp 407–514

    Google Scholar 

  • Takahata N (1989) Gene genealogy in three related populations: consistency probability between gene and population trees. Genetics 122:957–966

    PubMed  CAS  Google Scholar 

  • Tautz D, Arctander P, Minelli A, Thomas RH, Vogler AP (2002) DNA points the way ahead of taxonomy—In assessing new approaches, it’s time for DNA’s unique contribution to take a central role. Nature 418:479–479

    PubMed  CAS  Google Scholar 

  • Tautz D, Arctander P, Minelli A, Thomas RH, Vogler AP (2003) A plea for DNA taxonomy. Trends Ecol Evol 18:70–74

    Google Scholar 

  • Templeton AR (1989) The meaning of species and speciation: a genetic perspective. In: Otte D, Endler JA (eds), Speciation and its consequences. Sinauer Associates Inc, Sunderland MA, pp 2–27

    Google Scholar 

  • Turelli M, Orr HA (2000) Dominance, epistasis and the genetics of postzygotic isolation. Genetics 154:1663–1679

    PubMed  CAS  Google Scholar 

  • Vandewoestijne S, Baguette M, Brakefield PM, Saccheri IJ (2004) Phylogeography of Aglais urticae (Lepidoptera) based on DNA sequences of the mitochondrial COI gene and control region. Mol Phylogen Evol 31:630–646

    CAS  Google Scholar 

  • Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect? Systematics and the agony of choice. Biol Conserv 55:235–254

    Google Scholar 

  • Vogler AP, Desalle R (1994) Diagnosing units of conservation management. Conserv Biol 8:354–363

    Google Scholar 

  • Wahlberg N, Oliveira R, Scott JA (2003) Phylogenetic relationships of Phyciodes butterfly species (Lepidoptera: Nymphalidae): complex mtDNA variation and species delimitations. Syst Entomol 28:257–273

    Google Scholar 

  • Wakeley J (2007) Coalescent theory: an Introduction. Roberts & Company Publishers, Colorado

    Google Scholar 

  • Weingartner E, Wahlberg N, Nylin S (2006) Speciation in Pararge (Satyrinae: Nymphalidae) butterflies-North Africa is the source of ancestral populations of all Pararge species. Syst Entomol 31:621–632

    Google Scholar 

  • Werner U, Buszko J (2005) Detecting biodiversity hotspots using species-area and endemics-area relationships: the case of butterflies. Biodiv Conserv 14: 1977–1988

    Google Scholar 

  • Wheeler QD (2004) Taxonomic triage and the poverty of phylogeny. Philos Trans R Soc Lond B Biol Sci 359:571–583

    PubMed  Google Scholar 

  • Whinnett A, Zimmermann M, Willmott KR, Herrera N, Mallarino R, Simpson F, Joron M, Lamas G, Mallett J (2005) Strikingly variable divergence times inferred across an Amazonian butterfly “suture zone”. Proc R Soc Lond B Biol Sci 272:2525–2533

    Google Scholar 

  • Witt JDS, Threloff DL, Hebert PDN (2006) DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Mol Ecol 15:3073–3082

    Article  PubMed  CAS  Google Scholar 

  • Wu CI (1991) Inferences of species phylogeny in relation to segregation of ancient polymorphisms. Genetics 127:429–435

    PubMed  CAS  Google Scholar 

  • Zakharov EV, Caterino MS, Sperling FAH (2004) Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera : Papilionidae). Syst Biol 53:193–215

    PubMed  Google Scholar 

Download references

Acknowledgments

An early version of this paper was improved by comments from N. J. Sanders, F. A. H. Sperling, an anonymous reviewer, and the EEB discussion group at Texas State.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew L. Forister.

Additional information

Matthew L. Forister, Chris C. Nice and James A. Fordyce contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forister, M.L., Nice, C.C., Fordyce, J.A. et al. Considering evolutionary processes in the use of single-locus genetic data for conservation, with examples from the Lepidoptera. J Insect Conserv 12, 37–51 (2008). https://doi.org/10.1007/s10841-006-9061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-006-9061-6

Keywords

Navigation