Skip to main content
Log in

Understanding the effects of isolation on seed and pollen flow, spatial genetic structure and effective population size of the dioecious tropical tree species Myracrodruon urundeuva

  • Original Paper
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

This study examines the levels of gene flow, the distance and the patterns of pollen and seed dispersal, the intra-population spatial genetic structure (SGS) and the effective population size of a spatially isolated Myracrodruon urundeuva population using five microsatellite loci. The study was carried out in the Paulo de Faria Ecological Station, São Paulo State, Brazil and included the sampling and mapping of 467 adult-trees and 149 juveniles. Open-pollinated seeds (514) from 29 seed-trees were also sampled and genotyped. Significant SGS was detected in both adult (S p = 0.0269) and juveniles trees (S p = 0.0246), indicating short-distance seed dispersal. Using maternity analysis, all juveniles had the mother-tree assigned within the stand. A father-tree within the stand was also assigned for 97.3% of the juveniles and 98.4% of offspring. The average pollen dispersal distance measured in juveniles \( \left( {\hat{\delta } = 1 3 8\pm 1 6 9 {\text{ m}},{\text{ mean}} \pm {\text{SD}}} \right) \) and offspring \( \left( {\hat{\delta } = 2 5 2\pm 20 4 {\text{ m}}} \right) \) were higher than the average seed dispersal distance measured in juveniles \( \left( {\hat{\delta } = 1 2 4\pm 1 50{\text{ m}}} \right) \). About 70% of the pollen from juveniles and 51% from offspring traveled less than 200 m and, 72% of the seeds traveled less than 50 m. The effective population size of the studied sample indicates that the 467 adult-trees and 145 juveniles correspond respectively to 335 and 63 individuals that are neither inbred nor relatives. The results are discussed in relation to their impact on seed collection practices and genetic conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Loco J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188. doi:j.1365-294X.2008.03971.x

    Article  PubMed  Google Scholar 

  • Aldrich PR, Hamrick JL (1998) Reproductive dominance of pasture trees in a fragmented tropical forest mosaic. Science 281:103–105. doi:10.1126/science.281.5373.103

    Article  CAS  PubMed  Google Scholar 

  • Bacles CFE, Lowe A, Ennos R (2006) Effective seed dispersal across a fragmented landscape. Science 311:628. doi:10.1126/science.1121543

    Article  PubMed  Google Scholar 

  • Baleroni CRS, Alves PF, Santos EBR, Cambuim J, Andrade JAC, Moraes MLT (2003) Variação genética em populações naturais de aroeira em dois sistemas de plantio. Rev Inst Flor 15:125–136

    Google Scholar 

  • Barcha SF, Arid FM (1971) Estudo de evapotranspiração na região norte-ocidental do Estado de São Paulo. Rev Ciências 1:99–122

    Google Scholar 

  • Bawa KS (1994) Pollinators of tropical dioecious angiosperms: a reassessment? No, not yet. Am J Bot 81:456–460

    Article  Google Scholar 

  • Bittencourt JM, Sebbenn AM (2007) Patterns of pollen and seed dispersal in a small fragmented population of a wind pollinated Araucaria angustifolia in southern Brazil. Heredity 99:580–591. doi:10.1038/sj.hdy.6801019

    Article  CAS  PubMed  Google Scholar 

  • Bittencourt JM, Sebbenn AM (2008) Pollen movement in a continuous forest of Araucaria angustifolia, inferred from paternity and TwoGener analysis. Conserv Genet 9:855–868. doi:10.1007/s10592-007-9411-2

    Article  Google Scholar 

  • Burczyk J, Adams WT, Shimizu JY (1996) Mating patterns and pollen dispersal in a natural knobcone pine (Pinus attenuata Lemmon) stand. Heredity 77:251–260. doi:10.1038/hdy.1996.139

    Google Scholar 

  • Byrne M, Elliott CP, Yates CJ, Coates DJ (2008) Maintenance of high pollen dispersal in Eucalyptus wandoo a dominant tree of the fragmented agricultural region in Western Australia. Conserv Genet 9:97–105. doi:10.1007/s10592-007-9311-5

    Article  Google Scholar 

  • Caetano S, Silveira P, Spichiger R, Naciri-Graven Y (2005) Identification of microsatellite markers in a neotropical seasonally dry forest tree, Astronium urundeuva (Anacardiaceae). Mol Ecol Notes 5:21–23. doi:10.1111/j.1471-8286.2004.00814.x

    Article  CAS  Google Scholar 

  • Carneiro FS, Degen B, Kanashiro M, Lacerda AEB, Sebbenn AM (2009) High levels of pollen dispersal in Symphonia globulifera in a dense Brazilian Amazon forest revealed by paternity analysis. Forest Ecol Manag 258:1260–1266. doi:10.1016/j.foreco.2009.06.019

    Article  Google Scholar 

  • Carvalho PER (2003) Espécies arbóreas brasileiras. Embrapa Informação Tecnológica, Brasília

    Google Scholar 

  • Cockerham CC (1969) Variance of gene frequencies. Evolution 23:72–84

    Article  PubMed  Google Scholar 

  • Dick CW, Etchelecu G, Austerlitz F (2003) Pollen dispersal of Neotropical trees (Dinizia excelsa: Fabaceae) by native insects and Africa honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol 12:753–764. doi:10.1046/j.1365-294X.2003.01760.x

    Article  PubMed  Google Scholar 

  • Dick CW, Hardy OJ, Jones FA, Petit RJ (2008) Spatial scales of pollen and seed-mediated gene flow in tropical rain forest trees. Tropic Plant Biol 1:20–33. doi:10.1007/s12042-007-9006-6

    Article  Google Scholar 

  • Dow BD, Ashley MV (1996) Microsatellite analysis of seed dispersal and parentage of sampling in bur oak, Quercus macrocarpa. Mol Ecol 5:615–627. doi:10.1111/j.1365-294X.1996.tb00357.x

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dyer RJ, Sork LJ (2001) Pollen pool heterogeneity in shortleaf pine, Pinus schinata Mill. Mol Ecol 10:859–866. doi:10.1046/j.1365-294X.2001.01251.x

    Article  CAS  PubMed  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839. doi:10.1007/BF00221895

    Article  CAS  PubMed  Google Scholar 

  • Ghazoul J (2005) Pollen and seed dispersal among dispersed plants. Biol Rev 80:413–443. doi:10.1017/S1464793105006731

    Article  PubMed  Google Scholar 

  • Goudet J (1995) Fstat. (Version 2.9.3.2.): a computer program to calculate F-statistics. J Heredity 86:485–486

    Article  Google Scholar 

  • Gribel R, Gibbs PE (2002) High outbreeding as a consequence of selfed ovule mortality and single vector bat pollination in the Amazonian tree Pseudobombax munguba (Bombacaceae). Int J Plant Sci 163:1035–1043. doi:10.1086/342518

    Article  Google Scholar 

  • Hamilton MB (1999) Tropical tree gene flow and seed dispersal. Nature 401:129–130. doi:10.1038/43597

    Article  CAS  Google Scholar 

  • Hardesty BD, Hubbell S, Bermingham E (2006) Genetic evidence of frequent long-distance recruitment in a vertebrate-dispersed tree. Ecol Lett 9:516–525. doi:10.1111/j.1461-0248.2006.00897.x

    Article  PubMed  Google Scholar 

  • Hardy O, Vekemans X (2002) SPAGeDI: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi:10.1046/j.1471-8286.2002.00305.x

    Article  CAS  Google Scholar 

  • Hufford KM, Hamrick JL (2003) Variability selection at three early life stages of the tropical tree Platypodium elegans (Fabaceae, Papilonoidae). Evolution 57:518–526

    Article  PubMed  Google Scholar 

  • Idury RM, Cardon LR (1997) A simple method for automated allele binning in microsatellite markers. Genome Res 11:104–1109. doi:10.1101/gr.7.11.1104

    Google Scholar 

  • Jones FA, Chen J, Weng G-J, Hubbell SP (2005) A genetic evaluation of seed dispersal in the Neotropical tree, Jacaranda copaia (Bignonianaceae). Am Nat 166:543–555. doi:10.1086/491661

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how computer program Cervus accommodates genotyping error increase success in paternity assignment. Mol Ecol 16:1099–1106. doi:10.1111/j.1365-294X.2007.03089.x

    Article  PubMed  Google Scholar 

  • Kamm U, Rotach P, Gugerli F, Siraky M, Edwards P, Holderegger R (2009) Frequent long-distance gene flow in a rare temperate forest tree (Sorbus domestica) at the landscape scale. Heredity. doi:10.1038/hdy.2009.70

  • Kramer AT, Ison JL, Ashley MV, Howe HF (2008) The paradox of forest fragmentation genetics. Conserv Biol 22:878–885. doi:10.1111/j.1523-1739.2008.00944.x

    Article  PubMed  Google Scholar 

  • Lacerda EBL, Sebbenn AM, Kanashiro M (2008) Long-pollen movement and deviation of random mating in a low-density continuous population of Hymenaea courbaril in the Brazilian Amazon. Biotropica 40:462–470. doi:10.1111/j.1744-7429.2008.00.402.x

    Article  Google Scholar 

  • Levin DA (1988) The paternity pool plants. Am Nat 132:309–317

    Article  Google Scholar 

  • Lindgren D, Mullin TJ (1998) Relatedness and status number in seed orchard crops. Can J For Res 28:276–283. doi:10.1139/cjfr-28-2-276

    Article  Google Scholar 

  • Lindgren D, Gea L, Jefferson P (1996) Loss of genetic diversity by status number. Silva Genet 45:52–59

    Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for Neotropical trees. Heredity 95:255–273. doi:10.1038/sj.hdy.6800725

    Article  CAS  PubMed  Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655. doi:10.1046/j.1365-294x.1998.00374.x

    Article  CAS  PubMed  Google Scholar 

  • Meagher TR (1986) Analysis of paternity within a natural population of Chamaelirium luteum. 1. Identification of most-likely male parents. Am Nat 128:199–215

    Article  Google Scholar 

  • Meagher TR, Thompson E (1987) Analysis of parentage for naturally established seedlings of Chamaelirim luteum (Liliaceae). Ecology 68:803–812. doi:10.2307/1938351

    Article  Google Scholar 

  • Moraes MLT, Kageyama PY, Siqueira ACMF, Kano NK, Cambuim J (1992) Variação genética em duas populações de aroeira (Astronium urundeuva—Fr. All.—Engl.—Anacardiaceae). Rev Inst Flor 4:1241–1245

    Google Scholar 

  • Naito Y, Konuma A, Iwata H, Suyama Y, Seiwa K, Okudo T, Lee SL, Muhammad N, Tsumura Y (2005) Selfing and inbreeding depression in seeds and seedlings of Neobalanocarpus heimii (Dipterocarpaceae). J Plant Res 118:423–430. doi:10.1007/s10265-005-0245-z

    Article  PubMed  Google Scholar 

  • Nunes YRF, Fagundes M, Almeida HS, Veloso MDM (2008) Aspectos ecológicos da aroeira (Myracrodruon urundeuva Allemão- Anacardiaceae): fenologia e germinação de sementes. Rev Árv 32:233–243. doi:10.1590/S0100-67622008000200006

    Article  Google Scholar 

  • Nunney L, Campbell KA (1993) Assessing minimum viable population size: demography meets population genetics. Tree 8:234–239. doi:10.1016/0169-5347(93)90197-W

    CAS  PubMed  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirato MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implictions for conservation. Biol Conserv 142:1141–1153. doi:10.1016/j.biocon.2009.02.021

    Article  Google Scholar 

  • Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:221–228. doi:10.1038/sj.hdy.6800029

    Article  PubMed  Google Scholar 

  • Robledo-Arnuncio JJ, Smouse PE, Gil L, Alía R (2004) Pollen movement under alternative silvicultural practices in native population of Scots pine (Pinus sylvestris L.) in central Spain. Forest Ecol Manag 197:245–255. doi:10.1016/j.foreco.2004.05.016

    Article  Google Scholar 

  • Savolainen O, Kärkkäinen K (1992) Effect of forest management on gene pools. New Forest 6:329–345

    Article  Google Scholar 

  • Sebbenn AM (2002) Número de árvores matrizes e conceitos genéticos na coleta de sementes para reflorestamentos com espécies nativas. Rev Inst Flor 14:115–132

    Google Scholar 

  • Sebbenn AM, Carvalho ACM, Freitas MLM, Moraes SMB, Gaiano APSC, Silva JM, Jolivet C, Moraes MLT (2009) Low level of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree Copaifera langsdorffii Desf. Heredity (in press)

  • Sezen UU, Chazdon RL, Holsinger KE (2005) Genetic consequences of tropical second-growth forest regeneration. Science 307:891. doi:10.1126/science.1105034

    Article  CAS  PubMed  Google Scholar 

  • Silva MB, Kanashiro M, Ciampi AY, Tompson I, Sebbenn AM (2008) Genetic effects of selective logging and pollen gene flow in a low-density population of the dioecious tropical tree Bagassa guianensis in the Brazilian Amazon. Forest Ecol Manag 255:1548–1558. doi:10.1016/j.foreco.2007.11.012

    Article  Google Scholar 

  • Smouse PE, Dyer RJ, Westfall RD, Sork VL (2001) Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution 55:260–271

    Article  CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: principles and practices of statistics in biological research, 3rd edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Sork VL, Smouse PE, Apsit VJ, Dyer RJ, Westfall RD (2005) A Two-generation analysis of pollen pool genetic structure in flowering dogwood, Cornus florida (Cornaceae), in the Missouri Ozarks. Am J Bot 92:261–271

    Article  Google Scholar 

  • Sousa VA, Sebbenn AM, Hattemer H, Ziehe M (2005) Correlated mating in populations of a dioecious Brazilian conifer Araucaria angustifolia (Bert.) O. Ktze. For Genet 12:107–119

    Google Scholar 

  • Stranghetti V, Ranga NT (1998) Levantamento florístico das espécies vasculares da floresta estacional mesófila semidecídua da Estação Ecológica de Paulo de Faria–SP. Rev Bras Bot 21:295–304. doi:10.1590/S0100-84041998000300008

    Article  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analysis in plant populations. Mol Ecol 13:921–935. doi:10.1046/j.1365-294X.2004.02076.x

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ye Q, Kang M, Huang H (2007) Novel polymorphic microsatellite loci and patterns of pollen-mediated gene flow in an ex situ population of Eurycorymbus cavaleriei (Sampindaceae) as revealed by categorical paternity analysis. Conserv Genet 9:559–567. doi:10.1007/s10592-007-9369-0

    Article  CAS  Google Scholar 

  • White GM, Boshier DH, Powell W (2002) Increased pollen flow counteracts fragmentation in tropical dry forest: an example from Swietenia humilis Zuccarini. Proc Natl Acad Sci USA 99:2038–2042. doi:10.1073/pnas.042649999

    Article  CAS  PubMed  Google Scholar 

  • Wilmer P, Gilbert F, Ghazoul J, Zalat S, Semida F (1994) A novel form to territoriality—daily paternal investment in an anthophorid bee. Anim Behav 48:535–549

    Article  Google Scholar 

  • Young AG, Boyle TJ (2000) Effects of logging and other forms of harvesting on genetic diversity in humid tropical forest. For Conserv Genet, pp 115–123

  • Young AG, Boyle T, Brown ADH (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418. doi:10.1016/0169.5347(96)10045-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported financially by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP contract number: 06/53357-0). The article was part of the doctoral thesis of A.P.S.C. Gaino in the Faculdade de Engenharia de Ilha Solteira/UNESP, Ilha Solteira, São Paulo, Brazil. We would like to thank to José Cambuim for his assistance in sample collection and Selma M.B. Moraes, Juliana P. Moreira, and Laila T. Cardin for their lab work. A.P.S.C. Gaino would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the support of a doctoral scholarship at Faculdade de Engenharia de Ilha Solteira/UNESP (Brazil). The author M.A. Moraes and P.F. Alves thank FAPESP for the support of a Graduate scholarship. The author A.M. Sebbenn and M.L.T. Moraes thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for providing each with a Research Fellowship. We are also grateful to Dr. André E.B. Lacerda and Dr. Evelyn Nimmo for their suggestions and English correction in a previous version of this manuscript. The authors also are very grateful to an anonymous reviewer for corrections, suggestions and constructive criticism of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre M. Sebbenn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaino, A.P.S.C., Silva, A.M., Moraes, M.A. et al. Understanding the effects of isolation on seed and pollen flow, spatial genetic structure and effective population size of the dioecious tropical tree species Myracrodruon urundeuva . Conserv Genet 11, 1631–1643 (2010). https://doi.org/10.1007/s10592-010-0046-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-010-0046-3

Keywords

Navigation