Skip to main content
Log in

Novel polymorphic microsatellite loci and patterns of pollen-mediated gene flow in an ex situ population of Eurycorymbus cavaleriei (Sapindaceae) as revealed by categorical paternity analysis

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Understanding the patterns of contemporary, pollen-mediated gene flow is of great importance for designing appropriate conservation strategies. In this study, ten novel polymorphic microsatellite loci were isolated for the rare dioecious tree, Eurycorymbus cavaleriei, and the patterns of pollen dispersal were investigated in an ex situ conserved population. A combination of microsatellite markers with high-collective exclusion power (0.932) was used to assign paternity to 240 seeds collected from eight maternal trees. The average effective pollen dispersal distance (δ) was 292.6 m and the frequency distribution of pollen movement suggested extensive pollen movement in the population. The effective pollen donors per maternal tree (N ep) ranged from 5 to 10, and the most isolated maternal trees were observed with the largest number of N ep = 10. Although a trend of near-neighbor mating was found in seven of eight maternal trees, no significant correlations were detected between the average effective pollen dispersal distance (δ) and the geographic distances (d1 and d2) between maternal and male trees. The increased average effective distance of pollen dispersal and number of N ep for isolated maternal trees might be a compound consequence of low density and long-distance flight of pollinators of this species. The conservation implications of these results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Austerlitz F, Dick CW, Dutech C et al (2004) Using genetic markers to estimate the pollen dispersal curve. Mol Ecol 13:937–954

    Article  PubMed  Google Scholar 

  • Chaix G, Gerber S, Razafimaharo V et al (2003) Gene flow estimation with microsatellites in a Malagasy seed orchard of Eucalyptus grandis. Theor Appl Genet 107:705–712

    Article  PubMed  CAS  Google Scholar 

  • Chase M, Kesseli R, Bawa K (1996) Microsatellite markers for population and conservation genetics. Am J Bot 83:51–57

    Article  Google Scholar 

  • Chao CCT, Fang JG, Devanand PS (2005) Long distance pollen flow in mandarin orchards determined by AFLP markers—Implications for seedless mandarin production. J Am Soc Hortic Sci 130:374–380

    CAS  Google Scholar 

  • Chen J, Wang Y, Kang M et al (2006) Isolation and characterization of microsatellite loci in Eurycorymbus cavaleriei, a dioecious endemic tree species in China. Mol Ecol Notes 6:160–162

    Article  CAS  Google Scholar 

  • Dayanandan S, Attygalla DNC, Abeygunasekera AWWL et al (1990) Phenology and floral morphology in relation to pollination of some Sri Lankan dipterocarps. In: Bawa KS, Hadley M (eds) Reproductive ecology of tropical forest plants. Parthenon, Carnforth, UK, pp 103–134

    Google Scholar 

  • Degen B, Bandou E, Caron H (2004) Limited pollen dispersal and biparental inbreeding in Symphonia globulifera in French Guiana. Heredity 93:585–591

    Article  PubMed  CAS  Google Scholar 

  • Dick CW, Etchelecu G, Austerlitz F (2003) Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol 12:753–764

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Fu LK, Jin JM (eds) (1992) China plant red data book- rare and endangered plant. Science Press, Beijing

    Google Scholar 

  • García C, Arroyo JM, Godoy JA et al (2005) Mating patterns, pollen dispersal, and the ecological maternal neighbourhood in a Prunus mahaleb L. population. Mol Ecol 14:1821–1830

    Article  PubMed  Google Scholar 

  • Ghazoul J (2005) Pollen and seed dispersal among dispersed plants. Biol Rev 80:413–443

    Article  PubMed  Google Scholar 

  • Ghazoul J, Liston KA, Boyle TJB (1998) Disturbance-induced density-dependent seed set in Shorea siamensis (Dipterocarpaceae), a tropical forest tree. J Ecol 86:462–473

    Article  Google Scholar 

  • Hamrick JL, Nason JD (1996) Consequence of dispersal in plants. In: Rhodes OE, Ronald KC, Smith MH (eds) Population dynamics in ecological space and time. The University of Chicago Press, Chicago, pp 203–235

    Google Scholar 

  • Heilbuth JC (2000) Lower species richness in Dioecious clades. Am Nat 156:221–241

    Article  Google Scholar 

  • Heilbuth JC, Illves K, Otto SP (2001) The consequences of dioecy for seed dispersal: modeling the seed-shadow handicap. Evolution 55:880–888

    Article  PubMed  CAS  Google Scholar 

  • Hitchings SP, Beebee TJC (1998) Loss of genetic diversity and fitness in Common Toad (Bufo bufo) populations isolated by inimical habitat. J Evol Biol 11:269–283

    Article  Google Scholar 

  • Ishihama F, Nakano C, Ueno S et al (2003) Seed set and gene flow patterns in an experimental population of an endangered heterostylous herb with controlled local opposite-morph density. Funct Ecol 17:680–689

    Article  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kenta T, Isagi Y, Nakagawa M et al (2004) Variation in pollen dispersal between years with different pollination conditions in a tropical emergent tree. Mol Ecol 13:3575–3584

    Article  PubMed  CAS  Google Scholar 

  • Konuma A, Tsumura Y, Lee CT et al (2000) Estimation of gene flow in the tropical-rainforest tree Neobalanocarpus heimii (Dipterocarpaceae), inferred from paternity analysis. Mol Ecol 9:1843–1852

    Article  PubMed  CAS  Google Scholar 

  • Latouche-Halle C, Ramboier A, Bandou E et al (2004) Long-distance pollen flow and tolerance to selfing in a Neotropical tree species. Mol Ecol 13:1055–1226

    Article  PubMed  CAS  Google Scholar 

  • Meagher TR (1986) Analysis of paternity within a natural population of Chamaelirium luteum. I. Identification of most-likely male parents. Am Nat 128:199–215

    Article  Google Scholar 

  • Murawski DA, Hamrick JL (1992) The mating system of Cavanillesia platanifolia under extremes of flowering tree density: a test of predictions. Biotropica 24:99–101

    Article  Google Scholar 

  • Nason JD, Herre EA, Hamrick JL (1998) The breeding structure of a tropical keystone plant resource. Nature 391:685–687

    Article  CAS  Google Scholar 

  • Nishizawa T, Watano Y, Kinoshita E et al (2005) Pollen movement in a natural population of Arisaema Serratum (Araceae), a plant with a pitfall-trap flower pollination system. Am J Bot 92:1114–1123

    Article  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Richards CM, Church S, McCauley DE (1999) The influence of population size and isolation on gene flow by pollen in Silene alba. Evolution 53:63–73

    Article  Google Scholar 

  • Robledo-Arnuncio JJ, Gil L (2005) Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis. Heredity 94:13–22

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the www for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, USA, pp 365–386

    Google Scholar 

  • Schuster WSF, Mitton JB (2000) Paternity and gene dispersal in limber pine (Pinus flexilis James). Heredity 84:348–361

    Article  PubMed  CAS  Google Scholar 

  • Silva AD, Luikart G, Yoccoz NG, Cohas A, Alainé D (2006) Genetic diversity-fitness correlation revealed by microsatellite analyses in European alpine marmots (Marmota marmota). Conserv Genet 7:371–382

    Article  CAS  Google Scholar 

  • Slate J, Marshall T, Pemberton J (2000) A retrospective assessment of the accuracy of the paternity inference program CERVUS. Mol Ecol 9:801–808

    Article  PubMed  CAS  Google Scholar 

  • Sork VL, Davis FW, Smouse PE et al (2002) Pollen movement in declining populations of California Valley Oak, Quercus lobata: where have all the fathers gone? Mol Ecol 11:1657–1668

    Article  PubMed  CAS  Google Scholar 

  • Sork VL, Nason J, Campbell DR et al (1999) Landscape approaches to historical and contemporary gene flow in plants. Trends Ecol Evol 14:219–224

    Article  PubMed  Google Scholar 

  • Stacy EA, Hamrick JL, Nason JD et al (1996) Pollen dispersal in low-density populations of three Neotropical tree species. Am Nat 148:275–298

    Article  Google Scholar 

  • Vamosi JC, Vamosi SM (2004) The role of diversification in causing the correlates of dioecy. Evolution 58:723–731

    PubMed  Google Scholar 

  • Vamosi JC, Vamosi SM (2005) Present day risk of extinction may exacerbate the lower species richness of dioecious clades. Divers Distrib 11:25–32

    Article  Google Scholar 

  • Van Deynze AE, Sundstrom FJ, Bradford KJ (2005) Pollen-mediated gene flow in California cotton depends on pollinator activity. Crop Sci 45:1565–1570

    Article  Google Scholar 

  • White GM, Boshier DH, Powell W (2002) Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zuccarini. Proc Natl Acad Sci USA 99:2038–2204

    Article  PubMed  CAS  Google Scholar 

  • William JS, Andrew SP, Paul MD et al (2004) The need for evidence-based conservation. Trends Ecol Evol 19:305–308

    Article  Google Scholar 

  • Ye QG, Yao XH, Zhang SJ et al (2006) Potential risk of hybridization in ex situ collections of two endangered species of Sinojackia Hu (Styracaceae). J Integr Plant Biol 48:1–5

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sophie Gerber for advice on an earlier draft of the manuscript and Dr. Marshall Tristan for his help with statistical analysis. We also thank two anonymous reviewers for their valuable comments and suggestions. This work was supported by National Natural Sciences Foundation of China (30470185) and KIP Pilot Project of Chinese Academy of Sciences (KSCX2-YW-Z-054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Ye, Q., Kang, M. et al. Novel polymorphic microsatellite loci and patterns of pollen-mediated gene flow in an ex situ population of Eurycorymbus cavaleriei (Sapindaceae) as revealed by categorical paternity analysis. Conserv Genet 9, 559–567 (2008). https://doi.org/10.1007/s10592-007-9369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-007-9369-0

Keywords

Navigation