Skip to main content
Log in

Complexity analysis of interior-point methods for second-order stationary points of nonlinear semidefinite optimization problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We propose a primal-dual interior-point method (IPM) with convergence to second-order stationary points (SOSPs) of nonlinear semidefinite optimization problems, abbreviated as NSDPs. As far as we know, the current algorithms for NSDPs only ensure convergence to first-order stationary points such as Karush–Kuhn–Tucker points, but without a worst-case iteration complexity. The proposed method generates a sequence approximating SOSPs while minimizing a primal-dual merit function for NSDPs by using scaled gradient directions and directions of negative curvature. Under some assumptions, the generated sequence accumulates at an SOSP with a worst-case iteration complexity. This result is also obtained for a primal IPM with a slight modification. Finally, our numerical experiments show the benefits of using directions of negative curvature in the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability statement

The source code utilized in the numerical experiments can be accessed at https://github.com/Mathematical-Informatics-5th-Lab/Decreasing-NC-PDIPM. There is no conflict of interest in writing the paper.

Notes

  1. After the present study was submitted to the arXiv as a preprint [4], Yamashita [69] presented another interior-point method designed in the framework of the trust region method with convergence to an SOSP but without complexity analysis.

  2. A scaled gradient direction is intended to be the steepest-descent one premultiplied with a positive definite symmetric matrix.

  3. When \(\mathop {\text {Ker}}(X(\bar{x}))=\{0\}\), thus in the case where \(X(\bar{x})\in \mathbb {S}^m_{++}\), we write \(T_{\mathbb {S}^m_{+}}\left( {X(\bar{x})}\right) = \mathbb {S}^m\).

  4. If \(\varLambda \ne O\), such \(\overline{U}_1\) exists.

  5. The subscripts “PB” and “BC” represent “primal-barrier” and “barrier complementarity”, respectively in abbreviated form.

  6. We suppose that \(\psi _{\mu ,\nu } \left( {x_1, Z_1}\right) - \psi _{\mu ,\nu }^*\) does not converge to 0 as \(\mu \rightarrow 0\).

References

  1. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: Second-order negative-curvature methods for box-constrained and general constrained optimization. Comput. Optim. Appl. 45(2), 209–236 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Andreani, R., Haeser, G., Viana, D.S.: Optimality conditions and global convergence for nonlinear semidefinite programming. Math. Program. 180(1), 203–235 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Andreani, R., Martínez, J.M., Schuverdt, M.L.: On second-order optimality conditions for nonlinear programming. Optimization 56(5–6), 529–542 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Arahata, S., Okuno, T., Takeda, A.: Interior-point methods for second-order stationary points of nonlinear semidefinite optimization problems using negative curvature. arXiv preprint arXiv:2103.14320 (2021)

  5. Auslender, A.: Penalty methods for computing points that satisfy second order necessary conditions. Math. Program. 17(1), 229–238 (1979)

    MathSciNet  MATH  Google Scholar 

  6. Beck, A.: First-Order Methods in Optimization. SIAM, Philadelphia (2017)

    Book  MATH  Google Scholar 

  7. Bendsoe, M.P., Guedes, J.M., Haber, R.B., Pedersen, P., Taylor, J.E.: An analytical model to predict optimal material properties in the context of optimal structural design. J. Appl. Mech. 61(4), 930–937 (1994)

    MathSciNet  MATH  Google Scholar 

  8. Bonnans, J., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    MATH  Google Scholar 

  9. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  10. Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., Zhang, Q.: JAX: composable transformations of Python+NumPy programs. http://github.com/google/jax

  11. Conn, A.R., Gould, N.I.M., Orban, D., Toint, P.L.: A primal-dual trust-region algorithm for non-convex nonlinear programming. Math. Program. 87(2), 215–249 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Correa, R., Ramirez, C.H.: A global algorithm for nonlinear semidefinite programming. SIAM J. Optim. 15(1), 303–318 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Curtis, F.E., Lubberts, Z., Robinson, D.P.: Concise complexity analyses for trust region methods. Optim. Lett. 12(8), 1713–1724 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Curtis, F.E., Robinson, D.P.: Exploiting negative curvature in deterministic and stochastic optimization. Math. Program. 176(1), 69–94 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Curtis, F.E., Robinson, D.P., Royer, C.W., Wright, S.J.: Trust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimization. SIAM J. Optim. 31(1), 518–544 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Curtis, F.E., Robinson, D.P., Samadi, M.: A trust region algorithm with a worst-case iteration complexity of \({\cal{O} }(\epsilon ^{-3/2})\) for nonconvex optimization. Math. Program. 162(1), 1–32 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Di Pillo, G., Lucidi, S., Palagi, L.: Convergence to second-order stationary points of a primal-dual algorithm model for nonlinear programming. Math. of Oper. Res. 30(4), 897–915 (2005)

    MathSciNet  MATH  Google Scholar 

  18. El-Alem, M.M.: Convergence to a second-order point of a trust-region algorithm with a nonmonotonic penalty parameter for constrained optimization. J. Optim. Theory Appl. 91(1), 61–79 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Facchinei, F., Lucidi, S.: Convergence to Second order stationary points in inequality constrained optimization. Math. Oper. Res. 23(3), 746–766 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Fares, B., Apkarian, P., Noll, D.: An augmented Lagrangian method for a class of LMI-constrained problems in robust control theory. Int. J. Control 74(4), 348–360 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Fazel, M., Hindi, H., Boyd, S.P.: Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices. In: Proceedings of the 2003 American Control Conference, vol. 3, pp. 2156–2162 (2003)

  22. Forsgren, A.: Optimality conditions for nonconvex semidefinite programming. Math. Program. 88(1), 105–128 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Forsgren, A., Murray, W.: Newton methods for large-scale linear inequality-constrained minimization. SIAM J. Optim. 7(1), 162–176 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Freund, R.W., Jarre, F., Vogelbusch, C.H.: Nonlinear semidefinite programming: sensitivity, convergence, and an application in passive reduced-order modeling. Math. Program. 109(2–3), 581–611 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Fukuda, E.H., Lourenço, B.F.: Exact augmented Lagrangian functions for nonlinear semidefinite programming. Comput. Optim. Appl. 71(2), 457–482 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Goldfarb, D., Mu, C., Wright, J., Zhou, C.: Using negative curvature in solving nonlinear programs. Comput. Optim. Appl. 68(3), 479–502 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Hallak, N., Teboulle, M.: Finding second-order stationary points in constrained minimization: a feasible direction approach. J. Optim. Theory Appl. 186(2), 480–503 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Hinder, O., Ye, Y.: Worst-case iteration bounds for log barrier methods for problems with nonconvex constraints. arXiv:1807.00404 (2020)

  29. Hoi, C., Scherer, C., van der Meché, E., Bosgra, O.: A nonlinear SDP approach to fixed-order controller synthesis and comparison with two other methods applied to an active suspension system. Eur. J. Control. 9(1), 13–28 (2003)

    MATH  Google Scholar 

  30. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  31. Jarre, F.: An interior method for nonconvex semidefinite programs. Optim. Eng. 1, 347–372 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Kanno, Y., Takewaki, I.: Sequential semidefinite program for maximum robustness design of structures under load uncertainty. J. Optim. Theory Appl. 130(2), 265 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Kato, A., Yabe, H., Yamashita, H.: An interior point method with a primal-dual quadratic barrier penalty function for nonlinear semidefinite programming. J. Comput. Appl. Math. 275, 148–161 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Konno, H., Kawadai, N., Tuy, H.: Cutting plane algorithms for nonlinear semi-definite programming problems with applications. J. Global Optim. 25(2), 141–155 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Konno, H., Kawadai, N., Wu, D.: Estimation of failure probability using semi-definite logit model. Comput. Manage. Sci. 1(1), 59–73 (2003)

    MATH  Google Scholar 

  36. Kočvara, M., Leibfritz, F., Stingl, M., Henrion, D.: A nonlinear SDP algorithm for static output feedback problems in COMPleib. IFAC Proceedings Volumes 38(1), 1055–1060 (2005)

    Google Scholar 

  37. Kočvara, M., Stingl, M.: Solving nonconvex SDP problems of structural optimization with stability control. Optim. Method. Softw. 19(5), 595–609 (2004)

    MathSciNet  MATH  Google Scholar 

  38. Lahat, D., Févotte, C.: Positive semidefinite matrix factorization: a link to phase retrieval and a block gradient algorithm. In: IEEE International Conference on Acoustics, Speech and Signal Process (2020)

  39. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    MATH  Google Scholar 

  40. Leibfritz, F., Maruhn, J.H.: A successive SDP-NSDP approach to a robust optimization problem in finance. Comput. Optim. Appl. 44(3), 443 (2008)

    MathSciNet  MATH  Google Scholar 

  41. Leibfritz, F., Mostafa, E.M.E.: An interior point constrained trust region method for a special class of nonlinear semidefinite programming problems. SIAM J. Optim. 12(4), 1048–1074 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Lourenço, B.F., Fukuda, E.H., Fukushima, M.: Optimality conditions for nonlinear semidefinite programming via squared slack variables. Math. Program. 168(1), 177–200 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Lu, S., Razaviyayn, M., Yang, B., Huang, K., Hong, M.: Finding second-order stationary points efficiently in smooth nonconvex linearly constrained optimization problems. In: Advances in Neural Information Processing Systems, 33, 2811–2822 (2020)

  44. McCormick, G.P.: A modification of Armijo’s step-size rule for negative curvature. Math. Program. 13(1), 111–115 (1977)

    MathSciNet  MATH  Google Scholar 

  45. Moguerza, J.M., Prieto, F.J.: An augmented Lagrangian interior-point method using directions of negative curvature. Math. Program. 95(3), 573–616 (2003)

    MathSciNet  MATH  Google Scholar 

  46. Mokhtari, A., Ozdaglar, A., Jadbabaie, A.: Escaping saddle points in constrained optimization. Adv. Neural Inf. Process. Syst. 31, 3629–3639 (2018)

    Google Scholar 

  47. Mukai, H., Polak, E.: A second-order method for the general nonlinear programming problem. J. Optim. Theory Appl. 26(4), 515–532 (1978)

    MathSciNet  MATH  Google Scholar 

  48. Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39(2), 117–129 (1987)

    MathSciNet  MATH  Google Scholar 

  49. Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Math. Program. 108(1), 177–205 (2006)

    MathSciNet  MATH  Google Scholar 

  50. Nouiehed, M., Lee, J.D., Razaviyayn, M.: Convergence to second-order stationarity for constrained non-convex optimization. arXiv:1810.02024 (2020)

  51. Nouiehed, M., Razaviyayn, M.: A trust region method for finding second-order stationarity in linearly constrained nonconvex optimization. SIAM J. Optim. 30(3), 2501–2529 (2020)

    MathSciNet  MATH  Google Scholar 

  52. Okuno, T.: Local convergence of primal-dual interior point methods for nonlinear semi-definite optimization using the family of Monteiro–Tsuchiya directions. arXiv:2009.03020 (2020)

  53. Okuno, T., Fukushima, M.: An interior point sequential quadratic programming-type method for log-determinant semi-infinite programs. J. Comput. Appl. Math. 376, 112784 (2020)

    MathSciNet  MATH  Google Scholar 

  54. Okuno, T., Fukushima, M.: Primal-dual path following method for nonlinear semi-infinite programs with semi-definite constraints. Math. Program. pp. 1–53 (2022)

  55. O’Neill, M., Wright, S.J.: A log-barrier Newton-CG method for bound constrained optimization with complexity guarantees. IMA J. Numer. Anal. (2020)

  56. Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2), 111–126 (1994)

    Google Scholar 

  57. Qi, H.: Local duality of nonlinear semidefinite programming. Math. Oper. Res. 34(1), 124–141 (2009)

    MathSciNet  MATH  Google Scholar 

  58. Qi, H., Sun, D.: A quadratically convergent newton method for computing the nearest correlation matrix. SIAM J. Matrix Anal. Appl. 28(2), 360–385 (2006)

    MathSciNet  MATH  Google Scholar 

  59. Royer, C.W., O’Neill, M., Wright, S.J.: A Newton-CG algorithm with complexity guarantees for smooth unconstrained optimization. Math. Program. 180(1), 451–488 (2020)

    MathSciNet  MATH  Google Scholar 

  60. Shapiro, A.: First and second order analysis of nonlinear semidefinite programs. Math. Program. 77(1), 301–320 (1997)

    MathSciNet  MATH  Google Scholar 

  61. Sorensen, D.C.: Newton’s method with a model trust region modification. SIAM J. Numer. Anal. 19(2), 409–426 (1982)

    MathSciNet  MATH  Google Scholar 

  62. Sun, D.: The strong second-order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications. Math. Oper. Res. 31(4), 761–776 (2006)

    MathSciNet  MATH  Google Scholar 

  63. Sun, Y., Fazel, M.: Escaping saddle points efficiently in equality-constrained optimization problems. In: Workshop on Modern Trends in Nonconvex Optimization for Machine Learning at International Conference on Machine Learning (2018)

  64. Vandaele, A., Glineur, F., Gillis, N.: Algorithms for positive semidefinite factorization. Comput. Optim. Appl. 71(1), 193–219 (2018)

    MathSciNet  MATH  Google Scholar 

  65. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming: Theory, Algorithms, and Applications. Kluwer Academic Publishers, Alphen aan den Rijn (2000)

    MATH  Google Scholar 

  66. Xie, Y., Wright, S.J.: Complexity of proximal augmented Lagrangian for nonconvex optimization with nonlinear equality constraints. J. Sci. Comput. 86(3), 38 (2021)

    MathSciNet  MATH  Google Scholar 

  67. Yamakawa, Y., Okuno, T.: A stabilized sequential quadratic semidefinite programming method for degenerate nonlinear semidefinite programs. Comput. Optim. Appl. 83, 1027–1064 (2022). https://doi.org/10.1007/s10589-022-00402-x

    Article  MathSciNet  MATH  Google Scholar 

  68. Yamakawa, Y., Yamashita, N.: A two-step primal-dual interior point method for nonlinear semidefinite programming problems and its superlinear convergence. J. Oper. Res. Soc. Jpn. 57(3–4), 105–127 (2014)

    MathSciNet  MATH  Google Scholar 

  69. Yamashita, H.: Convergence to a second-order critical point by a primal-dual interior point trust-region method for nonlinear semidefinite programming. Optim. Methods Softw. pp. 1–35 (2022)

  70. Yamashita, H., Yabe, H.: Local and superlinear convergence of a primal-dual interior point method for nonlinear semidefinite programming. Math. Program. 132(1–2), 1–30 (2012)

    MathSciNet  MATH  Google Scholar 

  71. Yamashita, H., Yabe, H., Harada, K.: A primal-dual interior point method for nonlinear semidefinite programming. Math. Program. 135(1), 89–121 (2012)

    MathSciNet  MATH  Google Scholar 

  72. Yamashita, H., Yabe, H., Harada, K.: A primal-dual interior point trust-region method for nonlinear semidefinite programming. Optim. Method. Softw. (2020). Published online

  73. Zhao, Q., Chen, Z.: On the superlinear local convergence of a penalty-free method for nonlinear semidefinite programming. J. Comput. Appl. Math. 308, 1–19 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to the two anonymous reviewers and the associate editor for their valuable comments and suggestions. In addition, we also thank Dr. Hiroshi Yamashita and Professor Hiroshi Yabe for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Okuno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Japan Society for the Promotion of Science KAKENHI Grant Number 19H04069, 20K19748, 20H04145, and 23H03351. It was conducted when the first author was a student of the University of Tokyo and is irrelevant to his present affiliation.

Proofs of Lemma 5.2

Proofs of Lemma 5.2

1.1 Proof of Lemma 5.2 (1)

Proof

Notice that

$$\begin{aligned} \Vert X^{-1}_{\ell }- X^{-1}\Vert _{\textrm{F}} =\Vert X^{-1}_{\ell }\left( {X_{\ell }- X}\right) X^{-1}\Vert _{\textrm{F}} \le \Vert X^{-1}_{\ell }\Vert _{\textrm{F}}\Vert X^{-1}\Vert _{\textrm{F}} \Vert X_{\ell }-X\Vert _{\textrm{F}}. \end{aligned}$$

Since \(\Vert X^{-1}\Vert _{\textrm{F}}\le \Vert X^{-1}_{\ell }\Vert _{\textrm{F}}\) follows from Proposition 5.1 (1), inequality (8) yields \(\bigl \Vert X^{-1}_{\ell }-X^{-1}\bigr \Vert _{\textrm{F}} \le 2 L_0 \Vert X^{-1}_{\ell }\Vert _{\textrm{F}}^2 \Vert x^{\ell }-x\Vert . \) The proof is complete. \(\square \)

1.2 Proof of Lemma 5.2 (2)

Proof

Using (17), we obtain

$$\begin{aligned}&\Vert \nabla _x \psi _{\mu ,\nu } \left( {x^{\ell }, Z_\ell }\right) - \nabla _x \psi _{\mu ,\nu } \left( {x, Z_\ell }\right) \Vert \le \underbrace{\Vert \nabla f(x^{\ell })-\nabla f(x)\Vert }_{(A)} \\&\;+\underbrace{\nu \Vert \left( {\mathcal {A}^*(x^{\ell })Z_\ell - \mathcal {A}^*(x)Z_\ell }\right) \Vert }_{(B)} +\underbrace{\left( {1+\nu }\right) \mu \Vert \mathcal {A}^*(x^{\ell })X^{-1}_{\ell }- \mathcal {A}^*(x)X^{-1}\Vert }_{(C)} . \end{aligned}$$

In what follows, we evaluate upper bounds of (A), (B),  and (C).

Evaluation of (A) :  From (3), we have

$$\begin{aligned} (A) \le L_1 \Vert x^{\ell }- x\Vert . \end{aligned}$$
(A-1)

Evaluation of (B) : 

$$\begin{aligned} \begin{aligned} (B)&\le \nu \sum _{i=1}^n|\,\textrm{tr}\left( {Z_\ell \left( {\mathcal {A}_i\left( {x^{\ell }}\right) -\mathcal {A}_i\left( {x}\right) }\right) }\right) | \\&\le \nu \sum _{i=1}^n \Vert Z_\ell \Vert _{\textrm{F}}\Vert \mathcal {A}_i\left( {x^{\ell }}\right) -\mathcal {A}_i\left( {x}\right) \Vert _{\textrm{F}}\le \nu L_1 \Vert Z_\ell \Vert _{\textrm{F}} \Vert x^{\ell }- x\Vert , \end{aligned} \end{aligned}$$
(A-2)

where the third inequality follows from (9).

Evaluation of (C) :  Let

$$\begin{aligned} (D)&{:}{=}\left( {1+\nu }\right) \mu \Vert \left( {\mathcal {A}^*(x^{\ell })-\mathcal {A}^*(x)}\right) X^{-1}_{\ell }\Vert ,\\ (E)&{:}{=}\left( {1+\nu }\right) \mu \Vert \mathcal {A}^*(x)\left( {X^{-1}_{\ell }-X^{-1}}\right) \Vert . \end{aligned}$$

As \((C)\le (D) + (E)\), we will evaluate upper bounds of (D) and (E). With regard to (D), we obtain from (9) that

$$\begin{aligned} \begin{aligned} (D)&\le \left( {1+\nu }\right) \mu \Vert X^{-1}_{\ell }\Vert _{\textrm{F}}\sum _{i=1}^n \Vert \mathcal {A}^*(x^{\ell })- \mathcal {A}^*(x)\Vert _{\textrm{F}} \\&\le \left( {1+\nu }\right) \mu L_1 \Vert X^{-1}_{\ell }\Vert _{\textrm{F}}\Vert x^{\ell }- x\Vert . \end{aligned} \end{aligned}$$

Similarly, it follows from (5), that

$$\begin{aligned} (E)&\le \left( {1+\nu }\right) \mu \sum _{i=1}^n |\,\textrm{tr}\left( {\mathcal {A}_i\left( {x^{\ell }}\right) \left( {X^{-1}_{\ell }-X^{-1}}\right) }\right) | \\&\le \left( {1+\nu }\right) \mu \sum _{i=1}^n \Vert \mathcal {A}_i\left( {x}\right) \Vert _{\textrm{F}} \Vert X^{-1}_{\ell }-X^{-1}\Vert _{\textrm{F}} \\&\le 2 \left( {1+\nu }\right) \mu L_0\sum _{i=1}^n \Vert \mathcal {A}_i\left( {x}\right) \Vert _{\textrm{F}} \Vert X^{-1}_{\ell }\Vert _{\textrm{F}}^2 \Vert x^{\ell }- x\Vert \quad \quad (\text {by Lemma }5.2 (1)) \\&\le 2 \left( {1+\nu }\right) \mu L_0^2 \Vert X^{-1}_{\ell }\Vert _{\textrm{F}}^2 \Vert x^{\ell }- x\Vert .\quad \quad \qquad \qquad \qquad \qquad \quad (\text {by }(6)) \end{aligned}$$

Therefore

$$\begin{aligned} (C) \le \left( {\left( {1+\nu }\right) \mu L_1 \Vert X^{-1}_{\ell }\Vert _{\textrm{F}} + 2 \left( {1+\nu }\right) \mu L_0^2 \Vert X^{-1}_{\ell }\Vert _{\textrm{F}}^2}\right) \Vert x^{\ell }- x\Vert . \end{aligned}$$
(A-3)

Lastly, from (A-1)-(A-3), we obtain

$$\begin{aligned} \begin{aligned}&\Vert \nabla _x \psi _{\mu ,\nu } \left( {x^{\ell }, Z_\ell }\right) -\nabla _x \psi _{\mu ,\nu } \left( {x, Z_\ell }\right) \Vert \le \\&\quad \left( {L_1 + \nu L_1\Vert Z_\ell \Vert _{\textrm{F}}+ 2\left( {1+\nu }\right) \mu L_0^2\Vert X^{-1}_{\ell }\Vert _{\textrm{F}}^2 + \left( {1+\nu }\right) \mu L_1 \Vert X^{-1}_{\ell }\Vert _{\textrm{F}}}\right) \Vert x^{\ell }- x\Vert . \end{aligned} \end{aligned}$$

The proof is complete. \(\square \)

1.3 Proof of Lemma 5.2 (3)

Proof

Note that

$$\begin{aligned} \Vert \nabla _Z \psi _{\mu ,\nu } \left( {x^{\ell }, Z_\ell }\right) - \nabla _Z \psi _{\mu ,\nu } \left( {x^{\ell }, Z}\right) \Vert _{\textrm{F}}&= \mu \nu \Vert Z^{-1} - Z_\ell ^{-1}\Vert _{\textrm{F}} \\&\le \mu \nu \Vert Z_\ell ^{-1}\Vert _{\textrm{F}}\Vert Z_\ell - Z\Vert _{\textrm{F}} \Vert Z^{-1}\Vert _{\textrm{F}}, \end{aligned}$$

where the equality follows from (18). Since \(\Vert Z^{-1}\Vert _{\textrm{F}} \le 2\Vert Z_\ell ^{-1}\Vert _{\textrm{F}}\) from Proposition 5.1 (2), we have

$$\begin{aligned} \Vert \nabla _Z \psi _{\mu ,\nu } \left( {x^{\ell }, Z_\ell }\right) - \nabla _Z \psi _{\mu ,\nu } \left( {x^{\ell }, Z}\right) \Vert _{\textrm{F}} \le 2\mu \nu \Vert Z_\ell ^{-1}\Vert _{\textrm{F}}^2 \Vert Z_\ell - Z\Vert _{\textrm{F}}. \end{aligned}$$

The proof is complete. \(\square \)

1.4 Proof of Lemma 5.2 (4)

Proof

From (19), we have

$$\begin{aligned} (\nabla ^2_{xx} \psi _{\mu ,\nu } \left( {x^{\ell }, Z_\ell }\right) )_{ij} - (\nabla ^2_{xx}\psi _{\mu ,\nu } \left( {x, Z_\ell }\right) )_{ij} {=} (A_{ij}) + (B_{ij}) + (C_{ij}), \end{aligned}$$

where

$$\begin{aligned} (A_{ij})&:=\left( {\nabla ^2 f(x^{\ell })}\right) _{ij}-\left( {\nabla ^2 f\bigl (x\bigr )}\right) _{ij}, \\ (B_{ij})&:=\left( {1+\nu }\right) \mu \Bigl ( \,\textrm{tr}\left( {\mathcal {A}_i(x^{\ell }) X_{\ell }^{-1}\mathcal {A}_j(x^{\ell }) X_{\ell }^{-1}}\right) \\&\quad -\,\textrm{tr}\left( {\mathcal {A}_i(x)X^{-1}\mathcal {A}_j(x)X^{-1}}\right) \Bigr ), \\ (C_{ij})&:= \,\textrm{tr}\left( {\left( {\left( {1+\nu }\right) \mu X^{-1}- \nu Z_\ell }\right) \frac{\partial X}{\partial x_i}{x_j}\left( {x}\right) }\right) \\&\quad -\,\textrm{tr}\left( {\left( {\left( {1+\nu }\right) \mu X_{\ell }^{-1}- \nu Z_\ell }\right) \frac{\partial X}{\partial x_i}{x_j}\left( {x^{\ell }}\right) }\right) . \end{aligned}$$

In what follows, we evaluate \((A_{ij})\), \((B_{ij})\), and \((C_{ij})\).

Evaluation of \((A_{ij})\): From (4), we have

$$\begin{aligned} \Vert \nabla ^2 f(x^{\ell }) - \nabla ^2 f(x)\Vert \le L_2 \Vert x^{\ell }-x\Vert . \end{aligned}$$
(A-4)

Evaluation of \((B_{ij})\): \((B_{ij})\) can be written as

$$\begin{aligned} (B_{ij})&=\underbrace{\left( {1+\nu }\right) \mu \left( { \,\textrm{tr}\left( {\mathcal {A}_i(x^{\ell }) X^{-1}_{\ell }\mathcal {A}_j(x^{\ell })X^{-1}_{\ell }}\right) - \,\textrm{tr}\left( {\mathcal {A}_i(x) X^{-1}\mathcal {A}_j(x)X^{-1}_{\ell }}\right) }\right) }_{(D_{ij})} \\&\quad + \underbrace{ \left( {1+\nu }\right) \mu \left( { \,\textrm{tr}\left( {\mathcal {A}_i(x) X^{-1}\mathcal {A}_j(x) X^{-1}_{\ell }}\right) -\,\textrm{tr}\left( {\mathcal {A}_i(x)X^{-1}\mathcal {A}_j(x)X^{-1}}\right) }\right) }_{(E_{ij})}. \end{aligned}$$

Here, \((D_{ij})\) can be bounded as

$$\begin{aligned} |(D_{ij})|&\le \left( {1+\nu }\right) \mu \Vert X_{\ell }^{-1}\Vert _{\textrm{F}} \Vert \mathcal {A}_i(x^{\ell }) X_{\ell }^{-1}\mathcal {A}_j(x^{\ell })-\mathcal {A}_i(x) X^{-1}\mathcal {A}_j(x)\Vert _{\textrm{F}}\\&\le \underbrace{\left( {1+\nu }\right) \mu \Vert X_{\ell }^{-1}\Vert _{\textrm{F}} \Vert \mathcal {A}_i(x^{\ell }) X_{\ell }^{-1}\mathcal {A}_j(x^{\ell })-\mathcal {A}_i(x) X_{\ell }^{-1}\mathcal {A}_j(x)\Vert _{\textrm{F}}}_{(F_{ij})} \\&\quad + \underbrace{ \left( {1+\nu }\right) \mu \Vert X_{\ell }^{-1}\Vert _{\textrm{F}} \Vert \mathcal {A}_i(x) X_{\ell }^{-1}\mathcal {A}_j(x)-\mathcal {A}_i(x) X^{-1}\mathcal {A}_j(x)\Vert _{\textrm{F}}}_{(G_{ij})}. \end{aligned}$$

In the above, \((F_{ij})\) can be bounded as

$$\begin{aligned} \begin{aligned} (F_{ij})&\le \left( {1+\nu }\right) \mu \Vert X_{\ell }^{-1}\Vert _{\textrm{F}} \Vert \mathcal {A}_i(x^{\ell }) X_{\ell }^{-1}\mathcal {A}_j(x^{\ell })-\mathcal {A}_i(x) X_{\ell }^{-1}\mathcal {A}_j(x^{\ell })\Vert _{\textrm{F}}\\&\quad +\left( {1+\nu }\right) \mu \Vert X_{\ell }^{-1}\Vert _{\textrm{F}} \Vert \mathcal {A}_i(x) X_{\ell }^{-1}\mathcal {A}_j(x^{\ell })-\mathcal {A}_i(x) X_{\ell }^{-1}\mathcal {A}_j(x)\Vert _{\textrm{F}}\\&\le \left( {1+\nu }\right) \mu \Vert X_{\ell }^{-1}\Vert _{\textrm{F}} \Vert \mathcal {A}_i(x^{\ell }) - \mathcal {A}_i(x) \Vert _{\textrm{F}} \Vert X_{\ell }^{-1}\mathcal {A}_j(x^{\ell })\Vert _{\textrm{F}}\\&\quad + \left( {1+\nu }\right) \mu \Vert X_{\ell }^{-1}\Vert _{\textrm{F}}\Vert \mathcal {A}_i(x)X_{\ell }^{-1}\Vert _{\textrm{F}} \Vert \mathcal {A}_j(x^{\ell })-\mathcal {A}_j(x)\Vert _{\textrm{F}}. \end{aligned} \end{aligned}$$

Taking the sum of \((F_{ij})\) over ij together with (5) and (9) yields

$$\begin{aligned} \begin{aligned} \sum _{i=1}^n \sum _{j=1}^n (F_{ij})&\le 2\left( {1+\nu }\right) \mu L_0 L_1{\Vert X^{-1}_{\ell }\Vert _{\textrm{F}}^2} \Vert x^{\ell }-x\Vert . \end{aligned} \end{aligned}$$
(A-5)

For \((G_{ij})\), we obtain, from Lemma Lemma 5.2 (1),

$$\begin{aligned} \begin{aligned} (G_{ij})&\le \left( {1+\nu }\right) \mu \Vert X_{\ell }^{-1}\Vert _{\textrm{F}}\Vert \mathcal {A}_i(x)\Vert _{\textrm{F}}\Vert \mathcal {A}_j(x)\Vert _{\textrm{F}} \Vert X_{\ell }^{-1}- X^{-1}\Vert _{\textrm{F}} \\&\le 2\left( {1+\nu }\right) \mu L_0 \Vert X_{\ell }^{-1}\Vert _{\textrm{F}}^3\Vert \mathcal {A}_i(x)\Vert _{\textrm{F}}\Vert \mathcal {A}_j(x)\Vert _{\textrm{F}} \Vert x^{\ell }-x\Vert , \end{aligned} \end{aligned}$$

which together with (5) yields

$$\begin{aligned} \begin{aligned} \sum _{i=1}^n\sum _{j=1}^n (G_{ij})\le 2\left( {1+\nu }\right) \mu L_0^3 \Vert X^{-1}_{\ell }\Vert _{\textrm{F}}^3 \Vert x^{\ell }-x\Vert . \end{aligned} \end{aligned}$$
(A-6)

By combining inequalities (A-5) and (A-6), the sum of \((D_{ij})\) is bounded from above by

$$\begin{aligned} \begin{aligned}&\sum _{i=1}^n \sum _{j=1}^n |(D_{ij})|\\&\le 2\left( { \left( {1+\nu }\right) \mu L_0^3 \Vert X^{-1}_{\ell }\Vert _{\textrm{F}}^3+ \left( {1+\nu }\right) \mu L_0 L_1{\Vert X^{-1}_{\ell }\Vert _{\textrm{F}}^2} }\right) \Vert x^{\ell }-x\Vert . \end{aligned} \end{aligned}$$
(A-7)

With regard to \((E_{ij})\), we have

$$\begin{aligned} |\left( {E_{ij}}\right) | \le \left( {1+\nu }\right) \mu \Vert \mathcal {A}_i(x)\Vert _{\textrm{F}}\Vert \mathcal {A}_j(x)\Vert _{\textrm{F}}\Vert X^{-1}\Vert _{\textrm{F}} \Vert X_{\ell }^{-1}- X^{-1}\Vert _{\textrm{F}}. \end{aligned}$$

By taking the sum over ij of \(|\left( {E_{ij}}\right) |\) together with (5), Lemma 5.2 (1), and Proposition 5.1 (1), we have

$$\begin{aligned} \begin{aligned} \sum _{i=1}^n \sum _{j=1}^n |\left( {E_{ij}}\right) |&\le 4 \left( {1+\nu }\right) \mu L_0^3 \Vert X_{\ell }^{-1}\Vert _{\textrm{F}}^3 \Vert x^{\ell }- x\Vert . \end{aligned} \end{aligned}$$
(A-8)

Combining inequalities (A-7) and (A-8) yields

$$\begin{aligned} \begin{aligned}&\sum _{i=1}^n \sum _{j=1}^n |\left( {B_{ij}}\right) |\\&\le \left( {6\left( {1+\nu }\right) \mu L_0^3 \Vert X^{-1}_{\ell }\Vert _{\textrm{F}}^3+ 2\left( {1+\nu }\right) \mu L_0 L_1 {\Vert X_{\ell }^{-1}\Vert _{\textrm{F}}^2}}\right) \Vert x^{\ell }- x\Vert . \end{aligned} \end{aligned}$$
(A-9)

Evaluation of \((C_{ij})\): Note that \((C_{ij})\) can be written as

$$\begin{aligned} \left( {C_{ij}}\right)&=\underbrace{\nu \,\textrm{tr}\left( {Z_\ell \left( {\frac{\partial X}{\partial x_i}{x_j}\left( {x^{\ell }}\right) -\frac{\partial X}{\partial x_i}{x_j}\left( {x}\right) }\right) }\right) }_{(J_{ij})} \\&\quad +\underbrace{\left( {1+\nu }\right) \mu \,\textrm{tr}\left( {X^{-1}\frac{\partial X}{\partial x_i}{x_j}\left( {x}\right) -X^{-1}_{\ell }\frac{\partial X}{\partial x_i}{x_j}\left( {x^{\ell }}\right) }\right) }_{(K_{ij})}. \end{aligned}$$

By the Cauchy-Schwartz inequality, we have

$$\begin{aligned} \begin{aligned} \sum _{i=1}^n \sum _{j=1}^n|\left( {J_{ij}}\right) |&\le \nu \sum _{i=1}^n \sum _{j=1}^n\Vert Z_\ell \Vert _{\textrm{F}}\Vert \frac{\partial X}{\partial x_i}{x_j}\left( {x^{\ell }}\right) -\frac{\partial X}{\partial x_i}{x_j}\left( {x}\right) \Vert _{\textrm{F}} \\&\le \nu L_2 \Vert Z_\ell \Vert _{\textrm{F}} \Vert x^{\ell }-x\Vert . \end{aligned} \end{aligned}$$
(A-10)

With regard to the sum of \(|(K_{ij})|\),

$$\begin{aligned}&\sum _{i=1}^n \sum _{j=1}^n |(K_{ij})|\nonumber \\ {}&= \sum _{i=1}^n \sum _{j=1}^n \left| \left( {1+\nu }\right) \mu \,\text {tr}\left( {\left( {X^{-1}-X^{-1}_{\ell }}\right) \frac{\partial X}{\partial x_i}{x_j}\left( {x}\right) }\right) \right| \nonumber \\ {}&\quad + \sum _{i=1}^n \sum _{j=1}^n\left| \left( {1+\nu }\right) \mu \,\text {tr}\left( {X^{-1}_{\ell }\left( {\frac{\partial X}{\partial x_i}{x_j}\left( {x}\right) -\frac{\partial X}{\partial x_i}{x_j}\left( {x^{\ell }}\right) }\right) }\right) \right| \nonumber \\ {}&\le 2\left( {1+\nu }\right) \mu L_0 L_1 {\Vert X^{-1}_{\ell }\Vert _{\text {F}}^2} \Vert x^{\ell }-x\Vert +\left( {1+\nu }\right) \mu L_2 \Vert X^{-1}_{\ell }\Vert _{\text {F}}\Vert x^{\ell }-x\Vert , \end{aligned}$$
(A-11)

where the inequality follows from (6), (7), and Lemma 5.2 (1). Moreover, combining (A-10) and (A-11) yields

$$\begin{aligned} \begin{aligned}&\sum _{i=1}^n \sum _{j=1}^n |\left( {C_{ij}}\right) | \\&\le \left( { \nu L_2 \Vert Z_\ell \Vert _{\textrm{F}} + 2\left( {1+\nu }\right) \mu L_0 L_1{\Vert X^{-1}_{\ell }\Vert _{\textrm{F}}^2}+\left( {1+\nu }\right) \mu L_2 \Vert X^{-1}_{\ell }\Vert _{\textrm{F}}}\right) \Vert x^{\ell }-x\Vert . \end{aligned} \end{aligned}$$
(A-12)

Lastly, we have

$$\begin{aligned}&\Vert \nabla ^2_{xx} \psi _{\mu ,\nu } \left( {x^{\ell }, Z_\ell }\right) - \nabla ^2_{xx} \psi _{\mu ,\nu } \left( {x, Z_\ell }\right) \Vert \\&\le \Vert \nabla ^2 f(x^{\ell })-\nabla ^2 f(x)\Vert + \Vert (B_{ij})_{i,j}\Vert + \Vert (C_{ij})_{i,j}\Vert \\&\le \Vert \nabla ^2 f(x^{\ell })-\nabla ^2 f(x)\Vert + \Vert (B_{ij})_{i,j}\Vert _{\textrm{F}}+ \Vert (C_{ij})_{i,j}\Vert _{\textrm{F}}\\&\le \Vert \nabla ^2 f(x^{\ell })-\nabla ^2 f(x)\Vert + \sum _{i=1}^n\sum _{j=1}^n\left| (B_{ij})\right| +\sum _{i=1}^n\sum _{j=1}^n\left| (C_{ij})\right| , \end{aligned}$$

which together with (A-4), (A-9), and (A-12) implies

$$\begin{aligned}&\Vert \nabla ^2_{xx} \psi _{\mu ,\nu } \left( {x^{\ell }, Z_\ell }\right) - \nabla ^2_{xx} \psi _{\mu ,\nu } \left( {x, Z_\ell }\right) \Vert \\&\le \biggl ( L_2+\nu L_2 \Vert Z_\ell \Vert _{\textrm{F}} \\&\quad \quad + \left( {1+\nu }\right) \mu \left( { L_2 \Vert X^{-1}_{\ell }\Vert _{\textrm{F}} + 4 L_1 L_0\Vert X^{-1}_{\ell }\Vert _{\textrm{F}}^2 + 6 L_0^3 \Vert X^{-1}_{\ell }\Vert _{\textrm{F}}^3}\right) \biggr )\\&\quad \cdot \Vert x^{\ell }- x\Vert \end{aligned}$$

The proof is complete. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arahata, S., Okuno, T. & Takeda, A. Complexity analysis of interior-point methods for second-order stationary points of nonlinear semidefinite optimization problems. Comput Optim Appl 86, 555–598 (2023). https://doi.org/10.1007/s10589-023-00501-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-023-00501-3

Keywords

Mathematics Subject Classification

Navigation