Skip to main content
Log in

An interior-point algorithm for semidefinite least-squares problems

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We propose a feasible primal-dual path-following interior-point algorithm for semidefinite least squares problems (SDLS). At each iteration, the algorithm uses only full Nesterov-Todd steps with the advantage that no line search is required. Under new appropriate choices of the parameter β which defines the size of the neighborhood of the central-path and of the parameter θ which determines the rate of decrease of the barrier parameter, we show that the proposed algorithm is well defined and converges to the optimal solution of SDLS. Moreover, we obtain the currently best known iteration bound for the algorithm with a short-update method, namely, \({\cal O}(\sqrt n \log (n/\varepsilon))\). Finally, we report some numerical results to illustrate the efficiency of our proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Achache: A new primal-dual path-following method for convex quadratic programming. Comput. Appl. Math. 25 (2006), 97–110.

    Article  MathSciNet  Google Scholar 

  2. M. Achache: Complexity analysis of an interior point algorithm for the semidefinite optimization based on a kernel function with a double barrier term. Acta Math. Sin., Engl. Ser. 31 (2015), 543–556.

    Article  MathSciNet  Google Scholar 

  3. M. Achache: A new parameterized kernel function for LO yielding the best known iteration bound for a large-update interior point algorithm. Afr. Mat. 27 (2016), 591–601.

    Article  MathSciNet  Google Scholar 

  4. M. Achache, N. Boudiaf: Complexity analysis of primal-dual algorithms for the semi-definite linear complementarity problem. Rev. Anal. Numér. Théor. Approx. 40 (2011), 95–106.

    MathSciNet  MATH  Google Scholar 

  5. M. Achache, L. Guerra: A full Nesterov-Todd-step feasible primal-dual interior point algorithm for convex quadratic semi-definite optimization. Appl. Math. Comput. 231 (2014), 581–590.

    MathSciNet  MATH  Google Scholar 

  6. M. Achache, H. Roumili, A. Keraghel: A numerical study of an infeasible primal-dual path-following algorithm for linear programming. Appl. Math. Comput. 186 (2007), 1472–1479.

    MathSciNet  MATH  Google Scholar 

  7. M. Achache, N. Tabchouche: A full-Newton step feasible interior-point algorithm for monotone horizontal linear complementarity problems. Optim. Lett. 13 (2019), 1039–1057.

    Article  MathSciNet  Google Scholar 

  8. F. Alizadeh, J.-P. A. Haeberly, M. L. Overton: A New Primal-Dual Interior-Point Methods for Semidefinite Programming. Technical Report 659. Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, 1994.

    MATH  Google Scholar 

  9. B. Alzalg: A logarithmic barrier interior-point method based on majorant functions for second-order cone programming. Optim. Lett. 14 (2020), 729–746.

    Article  MathSciNet  Google Scholar 

  10. S. Boyd, L. Vandenberghe: Convex Optimization. Cambridge University Press, Cambridge, 2004.

    Book  Google Scholar 

  11. S. Boyd, L. Xiao: Least-squares covariance matrix adjustment. SIAM J. Matrix Anal. Appl. 27 (2005), 532–546.

    Article  MathSciNet  Google Scholar 

  12. L. B. Cherif, B. Merikhi: A penalty method for nonlinear programming. RAIRO, Oper. Res. 53 (2019), 29–38.

    Article  MathSciNet  Google Scholar 

  13. P. I. Davies, N. J. Higham: Numerically stable generation of correlation matrices and their factors. BIT 40 (2000), 640–651.

    Article  MathSciNet  Google Scholar 

  14. E. de Klerk: Interior Point Methods for Semidefinite Programming: Thesis Technische Universiteit Delf. 1997.

  15. C. Helmberg, F. Rendl, R. J. Vanderbei, H. Wolkowicz: An interior-point method for semidefinite programming. SIAM J. Optim. 6 (1996), 342–361.

    Article  MathSciNet  Google Scholar 

  16. D. Henrion, J. Malick: SDLS: A Matlab package for solving conic least-squares problems. Version 1.2. Available at https://homepages.laas.fr/henrion/software/sdls/ (2009).

  17. N. J. Higham: Computing the nearest correlation matrix — a problem from finance. IMA J. Numer. Anal. 22 (2002), 329–343.

    Article  MathSciNet  Google Scholar 

  18. S. Kettab, D. Benterki: A relaxed logarithmic barrier method for semidefinite programming. RAIRO, Oper. Res. 49 (2015), 555–568.

    Article  MathSciNet  Google Scholar 

  19. M. Kojima, S. Shindoh, S. Hara: Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Optim. 7 (1997), 86–125.

    Article  MathSciNet  Google Scholar 

  20. N. G. B. Krislock: Numerical Solution of Semidefinite Constrained Least Squares Problems: A Thesis. University of British Columbia, Vancouver, 2003.

    Google Scholar 

  21. J. Malich. A dual approach to semidefinite least-squares problems. SIAM J. Matrix Anal. Appl. 26 (2004), 272–284.

    Article  MathSciNet  Google Scholar 

  22. J. Malick: Applications of SDP least-squares in finance and combinatorics. CNRS, Lab. J. Kuntzmann, Grenoble. CORE Math. Prog. Seminar-11 March, 2008.

  23. R. D. C. Monteiro: Primal-dual path-following algorithms for semidefinite programming. SIAM J. Optim. 7 (1997), 663–678.

    Article  MathSciNet  Google Scholar 

  24. Y. E. Nesterov, M. J. Todd: Self-scaled barriers and interior-point methods for convex programming. Math. Oper. Res. 22 (1997), 1–42.

    Article  MathSciNet  Google Scholar 

  25. Y. E. Nesterov, M. J. Todd: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim. 8 (1998), 324–364.

    Article  MathSciNet  Google Scholar 

  26. X. Qian: Continuous Methods for Convex Programming and Convex Semidefinite Programming: PhD. Thesis. Hong Kong Baptist University, Hong Kong, 2017.

    Google Scholar 

  27. M. J. Todd: A study of search directions in primal-dual interior-point methods for semi-definite programming. Optim. Methods Softw. 11 (1999), 1–46.

    Article  MathSciNet  Google Scholar 

  28. K. C. Toh, M. J. Todd, R. H. Tütüncü: SDPT3 — a MATLAB package for semidefinite programming, version 1.3. Optim. Methods Softw. 11 (1999), 545–581.

    Article  MathSciNet  Google Scholar 

  29. Y. Ye: Interior Point Algorithms: Theory and Analysis. Wiley-Interscience Series in Discrete Mathematics and Optimization. John-Wiley & Sons, Chichester, 1997.

    Book  Google Scholar 

  30. Y. Zhang: On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming. SIAM J. Optim. 8 (1998), 365–386.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chafia Daili.

Additional information

The research has been supported for the second author by: La Direction Générale de la Recherche Scientifique et du Développement Technologique (DGRSDT-MESRS), under project PRFU number C00L03UN190120190004, Algérie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daili, C., Achache, M. An interior-point algorithm for semidefinite least-squares problems. Appl Math 67, 371–391 (2022). https://doi.org/10.21136/AM.2021.0217-20

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2021.0217-20

Keywords

MSC 2020

Navigation