Skip to main content
Log in

A global exact penalty for rank-constrained optimization problem and applications

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper considers a rank-constrained optimization problem where the objective function is continuously differentiable on a closed convex set. After replacing the rank constraint by an equality of the truncated difference of L1 and L2 norm, and adding the equality constraint into the objective to get a penalty problem, we prove that the penalty problem is exact in the sense that the set of its global (local) optimal solutions coincides with that of the original problem when the penalty parameter is over a certain threshold. This establishes the theoretical guarantee for the truncated difference of L1 and L2 norm regularization optimization including the work of Ma et al. (SIAM J Imaging Sci 10(3):1346–1380, 2017). Besides, for the penalty problem, we propose an extrapolation proximal difference of convex algorithm (epDCA) and prove the sequence generated by epDCA converges to a stationary point of the penalty problem. Further, an adaptive penalty method based on epDCA is constructed for the original rank-constrained problem. The efficiency of the algorithms is verified via numerical experiments for the nearest low-rank correlation matrix problem and the matrix completion problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116(1–2), 5–16 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res. 35, 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized GaussSeidel methods. Math. Program. 137(1–2), 91–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bi, S.J., Pan, S.H.: Error bounds for rank constrained optimization problems and applications. Oper. Res. Lett. 44(3), 336–341 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2007)

    Article  MATH  Google Scholar 

  7. Burer, S., Monteiro, R., Yin, Z.: Maximum stable set formulations and heuristics based on continuous optimization. Math. Program. 94(1), 137–166 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burer, S., Monteiro, R.: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program. 95(2), 329–357 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, J., Candes, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cai, T., Zhang, A.: ROP: Matrix recovery via rank-one projections. Ann. Stat. 43(1), 102–138 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Delgado, R.A., Aguero, J.C., Goodwin, G.C.: A rank-constrained optimization approach: application to factor analysis. IFAC Proc. Vol. 47(3), 10373–10378 (2014)

    Article  Google Scholar 

  12. Fazel, M.: Matrix Tank Minimization with Applications. Standford University (2002)

  13. Gao, Y., Sun, D.F.: Calibrating least squares semidefinite programming with equality and inequality constraints. SIAM J. Matrix Anal. Appl. 31(3), 1432–1457 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, Y., Sun, D.F.: A majorized penalty approach for calibrating rank constrained correlation matrix problems, Technical report, Department of Mathematics, National University of Singapore, Singapore (2010)

  15. Gengy, T., Sun, G., Xu, Y., He, J.: Truncated nuclear norm minimization based group sparse representation for image restoration. SIAM J. Imag. Sci. 11(3), 1878–1897 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gillis, N., Glineur, F.: Low-rank matrix approximation with weights or missing data is NP-hard. SIAM J. Matrix Anal. Appl. 32(4), 1149–1165 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gotoh, J.Y., Takeda, A., Tono, K.: DC formulations and algorithms for sparse optimization problems. Math. Program. 169(1), 141–176 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grossmann, C., Jones, C., Morari, M.: System identification with missing data via nuclear norm regularization, Control Conference. IEEE (2009)

  19. Hu, W., Wang, Z., Liu, S., Yang, X., Yu, G., Zhang, J.: Motion capture data completion via truncated nuclear norm regularization. IEEE Signal Process. Lett. 25(2), 258–262 (2017)

    Article  Google Scholar 

  20. Hu, Y., Zhang, D., Ye, J., Li, X.: Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2117–2130 (2013)

    Article  Google Scholar 

  21. Kim, S.J., Moon, Y.H.: Structurally constrained \(H_{2}\) and \(H_{\infty }\) control: a rank-constrained LMI approach. Automatica 42(9), 1583–1588 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lai, M.J., Xu, Y., Yin, W.: Improved iteratively reweighted least squares for unconstrained smoothed lq minimization. SIAM J. Numer. Anal. 51(2), 927–957 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, T., Pong, T.K., Takeda, A.: A refined convergence analysis of \(pDCA_{e}\) with applications to simultaneous sparse recovery and outlier detection. Comput. Optim. Appl. 73(1), 69–100 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, T., Lu, Z., Chen, X., Dai, Y.: An exact penalty method for semidefinite-box-constrained low-rank matrix optimization problems. IMA J. Numer. Anal. 40(1), 563–586 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lu, Y., Zhang, L., Wu, J.: A smoothing majorization method for matrix minimization. Optim. Methods Softw. 30(4/6), 682–705 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lu, Z., Zhang, Y., Li, X.: Penalty decomposition methods for rank minimization. Optim. Methods Softw. 30(3), 531–558 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lu, Z., Yong, Z., Jian, L.: \(L_{p}\) regularized low-rank approximation via iterative reweighted singular value minimization. Comput. Optim. Appl. 68(3), 1–24 (2017)

    Article  MathSciNet  Google Scholar 

  28. Ma, T., Lou, Y., Huang, T.: Truncated l1–l2 Models for sparse recovery and rank minimization. SIAM J. Imaging Sci. 10(3), 1346–1380 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Markovsky, I.: Structured low-rank approximation and its applications. Automatica 44(4), 891–909 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nguyen, L.T., Kim, J., Shim, B.: Low-rank matrix completion: a contemporary survey. IEEE Access 7, 94215–94237 (2019)

    Article  Google Scholar 

  31. Pham, D.T., Le, T.H.A.: Convex analysis approach to D.C.programming: theory, algorithms and applications. Acta Math. Vietnam 22(1), 289–355 (1997)

    MathSciNet  Google Scholar 

  32. Qian, Y., Pan, S.: Relaxation approaches to a class of UBPPs based on equivalent DC penalized matrix programs, arXiv e-prints (2020)

  33. Rockafellar, R.T., Wets, R. J-B.: Variational Analysis. Springer (1998)

  34. Schneider, R., Uschmajew, A.: Convergence results for projected line-search methods on varieties of low-rank matrices via Łojasiewicz inequality. SIAM J. Optim. 25(1), 622–646 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vandereycken, B.: Low-rank matrix completion by Riemannian optimization. SIAM J. Optim. 23(2), 1214–1236 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wen, B., Chen, X., Pong, T.K.: A proximal difference-of-convex algorithm with extrapolation. Comput. Optim. Appl. 69(2), 297–324 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu, L.X.: Fast at-the-money calibration of the LIBOR market model using Lagrange multipliers. J. Comput. Finance 6, 39–77 (2003)

    Article  Google Scholar 

  38. Zeng, W.J., So, H.C.: Outlier-robust matrix completion via \(l_{p}\)-minimization. IEEE Trans. Signal Process. 66(5), 1125–1140 (2017)

    Article  MATH  Google Scholar 

  39. Zhang, Z.Y., Wu, L.X.: Optimal low-rank approximation to a correlation matrix. Linear Algebra Appl. 364(1), 161–187 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous referees for their comments and Prof. Shaohua Pan in South China University of Technology for her helpful advice, which enabled us to improve the quality of the paper.

Funding

This work is supported by National Natural Science Foundation of China (11971177), Guangdong Basic and Applied Basic Research Foundation (2021A1515010210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: The proof of the Lemma 4.1

Proof

(a) Fix any \(\alpha \in \mathbb {R}\). Consider the level set \(\ell _\alpha (g):=\{x\in \mathbb {R}^d \ |\ g(x)\le \alpha \}\). Notice that

$$\begin{aligned} \ell _\alpha (g)=\{(x,t)\in \mathbb {R}^d\times \mathbb {R}\ |\ g(x)\le t\} g\cap \{(x,t)\in \mathbb {R}^d\times \mathbb {R}\ |\ t=\alpha \}. \end{aligned}$$

Since g and \(\{(x,t)\in \mathbb {R}^d\times \mathbb {R}\ |\ t=\alpha \}\) are semialegbraic, we conclude that \(\ell _\alpha (g)\) is semialegbraic.

(b) By the definition, \(\Vert X\Vert\) can be written as

$$\begin{aligned} \Vert X\Vert =\sup _{u\in \mathbb {R}^{m\times 1},v\in \mathbb {R}^{n\times 1}}\{\langle X,uv^T\rangle s.t.\Vert u\Vert =1,\Vert v\Vert =1\},\ \ \ X\in \mathbb {R}^{m\times n}. \end{aligned}$$

Since Euclidean unit ball is a semialgebraic set [2], it holds that spectral norm \(\Vert X\Vert\) is a semialgebraic.

Next, we prove \(\Vert \cdot \Vert _h\) is semialgebraic. Since composition of semialgebraic functions are semialgebraic and \(\Vert \cdot \Vert _h:=h(\sigma (\cdot ))\), we only need to show that the function h is semialgebraic. Let \(h_1(x):={\textstyle \sum _{i=1}^{r-1}}|x|_i^{\downarrow }\) and \(h_2(x):=\sqrt{{\textstyle \sum _{i=r}^q}[|x|_i^{\downarrow }]^2}\). Notice that finite sums of semialgebraic functions are semialgebraic. Thus, it suffices to prove that \(h_1(x)\) and \(h_2(x)\) are semialgebraic. For a positive integer q, we let \(S_q\) denote the set of all possible permutations of \(\{1, \ldots , q\}\). For each fixed permutation \(\sigma \in S_q\), define

$$\begin{aligned} \Omega _\sigma :=\{x\in \mathbb {R}^q \ | \ |x_{\sigma (1)}|\ge |x_{\sigma (2)}|\ge \cdots \ge |x_{\sigma (q)}| \}, \end{aligned}$$

then we have \(\bigcup _{\sigma \in S_q} \Omega _\sigma = \mathbb {R}^q\). Thus, for any \(x\in \mathbb {R}^q\), there exists a permutation \(\sigma \in S_q\) such that \(x\in \Omega _\sigma\), \(h_1(x)={\textstyle \sum _{i=1}^{r-1}} |x_{\sigma (i)}|\) and \(h_2(x)=\sqrt{{\textstyle \sum _{i=r}^q}x_{\sigma (i)}^2}\). The graph of \(h_1(x)\) is the set

$$\begin{aligned} \bigcup _{\sigma \in S_q} \{ (x,t)\in \mathbb {R}^q \times \mathbb {R}_+ \ | \ {\textstyle \sum _{i=1}^{r-1}} |x_{\sigma (i)}|= t\}. \end{aligned}$$

Since the set \(\{ (x,t)\in \mathbb {R}^q \times \mathbb {R}_+ \ | \ {\textstyle \sum _{i=1}^{r-1}} |x_{\sigma (i)}|= t\}\) is semialgebraic and the number of \(S_q\) is finite. Hence the graph of \(h_1(x)\) is semialgebraic, and then the function \(h_1(x)\) is semialgebraic. Next, we consider the graph of \(h_2(x)\),

$$\begin{aligned} \bigcup _{\sigma \in S_q} \{ (x,t)\in \mathbb {R}^q \times \mathbb {R}_+ \ | \ \sqrt{{\textstyle \sum _{i=r}^q} x_{\sigma (i)}^2 } = t\} = \bigcup _{\sigma \in S_q} \{ (x,t)\in \mathbb {R}^q \times \mathbb {R}_+ \ | \ {\textstyle \sum _{i=r}^q} x_{\sigma (i)}^2 = t^2\}. \end{aligned}$$

Using a similar argument as above, one can see that the function \(h_2(x)\) is semialgebraic.

For the function \((\Vert \cdot \Vert _h)^*\), we have by the definition of conjugate function

$$\begin{aligned} (\Vert \cdot \Vert _h)^*(W)=\sup _{V\in \mathbb {R}^{m\times n}}\{\langle V,W \rangle -\Vert V\Vert _h\}=\delta _\mathbb {B}(W), \ \ \forall W\in \mathbb {R}^{m\times n} \end{aligned}$$

where \(\mathbb {B}:=\{Z\in \mathbb {R}^{m\times n} \ | \ \Vert Z\Vert _h{_*}\le 1\}\) denotes the unit ball on \(\Vert \cdot \Vert _h{_*}\). Notice that \(\Vert \cdot \Vert _h{_*}\) is the dual norm of \(\Vert \cdot \Vert _h\) and \(\Vert \cdot \Vert _{h^*}=\sup _{\Vert Z\Vert _h\le 1}\langle \cdot ,Z\rangle .\) From Lemma 4.1 (a) and the result that \(\Vert \cdot \Vert _h\) is semialgebraic, we get that \(\{Z\in \mathbb {R}^{m\times n}\ | \ \Vert Z\Vert _h\le 1\}\) is a semialgebraic set, which implies the dual norm \(\Vert \cdot \Vert _{h^*}\) is a semialgebraic function and then \(\mathbb {B}\) is a semialgebraic set. By the fact that indicator function of semialgebraic set is semialgebraic function [2], we get the result that \((\Vert \cdot \Vert _h)^*\) is semialgebraic.

Therefore, the proof is complete. \(\square\)

Appendix 2: The proof of the Lemma 4.2

Proof

From [2], the correlation matrix set is semialgebraic. Since \(\Vert \cdot \Vert\) is a semialgebraic function, then its level set is semialgebraic. The density set \(\{X\in \mathbb {S}^{n}_{+} \ | \ tr(X)=1\}\) is equivalent to \(\{X\in \mathbb {S}^{n}_{+} \ | \ \Vert X\Vert _{*}=1\}\), and the set \(\{X\in \mathbb {S}^{n}_{+} |X\preceq I\}\) is equivalent to \(\{X\in \mathbb {S}^{n}_{+} |\Vert X\Vert \le 1\}\), and thus these sets are semialgebraic. The proof is complete. \(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Han, L. A global exact penalty for rank-constrained optimization problem and applications. Comput Optim Appl 84, 477–508 (2023). https://doi.org/10.1007/s10589-022-00427-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-022-00427-2

Keywords

Navigation