Skip to main content
Log in

Regularized robust optimization: the optimal portfolio execution case

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

An uncertainty set is a crucial component in robust optimization. Unfortunately, it is often unclear how to specify it precisely. Thus it is important to study sensitivity of the robust solution to variations in the uncertainty set, and to develop a method which improves stability of the robust solution. In this paper, to address these issues, we focus on uncertainty in the price impact parameters in an optimal portfolio execution problem. We first illustrate that a small variation in the uncertainty set may result in a large change in the robust solution. We then propose a regularized robust optimization formulation which yields a solution with a better stability property than the classical robust solution. In this approach, the uncertainty set is regularized through a regularization constraint, defined by a linear matrix inequality using the Hessian of the objective function and a regularization parameter. The regularized robust solution is then more stable with respect to variation in the uncertainty set specification, in addition to being more robust to estimation errors in the price impact parameters. The regularized robust optimal execution strategy can be computed by an efficient method based on convex optimization. Improvement in the stability of the robust solution is analyzed. We also study implications of the regularization on the optimal execution strategy and its corresponding execution cost. Through the regularization parameter, one can adjust the level of conservatism of the robust solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The second summation of the objective function in problem (9), at k=1, yields the term \(\frac{1}{\tau}\bar{S}^{T}\tilde{H}\bar{S}\).

  2. The units for H and G are $ per share2 and $ per day per share2, respectively.

  3. Note that the problem of minimizing a non-convex quadratic function is known to be NP-hard [45].

References

  1. Almgren, R., Chriss, N.: Optimal execution of portfolio transactions. J. Risk 3(2), 5–39 (2000/2001)

    Google Scholar 

  2. Almgren, R., Lorenz, J.: Bayesian adaptive trading with a daily cycle. J. Trading 1(4), 38–46 (2006)

    Article  Google Scholar 

  3. Alvoni, E., Papini, P.L.: Perturbation of sets and centers. J. Glob. Optim. 33(3), 423–434 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Basener, W.F.: Topology and Its Applications. Wiley-Interscience, New York (2006)

    Book  MATH  Google Scholar 

  5. Ben-Tal, A., ElGhaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  6. Ben-Tal, A., Margalit, T., Nemirovsk, A.: Robust modeling of multi-stage portfolio problems. In: Frenk, H., Roos, K., Terlaky, T., Zhang, S. (eds.) High-Performance Optimization, pp. 303–328. Kluwer Academic, Dordrecht (2000)

    Chapter  Google Scholar 

  7. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–13 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 88(3), 411–424 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bessembinder, H.: Issues in assessing trade execution costs. J. Financ. Mark. 6(3), 233–257 (2003)

    Article  Google Scholar 

  12. Beyer, H.-G., Sendhoff, B.: Robust optimization—a comprehensive survey. Comput. Methods Appl. Mech. Eng. 196(33–34), 3190–3218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bienstock, D.: Histogram models for robust portfolio optimization. J. Comput. Finance 11(1), 1–64 (2007)

    Google Scholar 

  14. Bonnans, J., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2000)

    MATH  Google Scholar 

  15. Broadie, M.: Computing efficient frontiers using estimated parameters. Ann. Oper. Res. 45(1), 21–58 (1993)

    Article  MATH  Google Scholar 

  16. Ceria, S., Stubbs, R.: Incorporating estimation errors into portfolio selection: robust portfolio construction. J. Asset Manag. 7(2), 109–127 (2006)

    Article  Google Scholar 

  17. Demiguel, V., Nogales, F.J.: Portfolio selection with robust estimates of risk. Oper. Res. 57(3), 560–577 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dostál, Z.: Optimal Quadratic Programming Algorithms: With Applications to Variational Inequalities. Springer, Berlin (2009)

    MATH  Google Scholar 

  19. ElGhaoui, L., Lebret, H.: Robust solutions to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 18(4), 1035–1064 (1997)

    Article  MathSciNet  Google Scholar 

  20. ElGhaoui, L., Oks, M., Oustry, F.: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper. Res. 51(4), 543–556 (2003)

    Article  MathSciNet  Google Scholar 

  21. ElGhaoui, L., Oustry, F., Lebret, H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9(1), 33–52 (1998)

    Article  MathSciNet  Google Scholar 

  22. Engl, H.: Regularization methods for the stable solution of inverse problems. Surv. Math. Ind. 3, 71–143 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Fabozzi, F.J., Kolm, P.N., Pachamanova, D., Focardi, S.M.: Robust Portfolio Optimization and Management. Wiley, New York (2007)

    Google Scholar 

  24. Fiacco, V.: Convergence properties of local solutions of sequences of mathematical programming problems in general spaces. J. Optim. Theory Appl. 13(1), 1–12 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fierro, R.D., Golub, G.H., Hansen, P.C., O’Leary, D.P.: Regularization by truncated total least squares. SIAM J. Sci. Comput. 18(4), 1223–1241 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Forsyth, P.: A Hamilton Jacobi Bellman approach to optimal trade execution. Appl. Numer. Math. 61(2), 241–265 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Garlappi, L., Uppal, R., Wang, T.: Portfolio selection with parameter and model uncertainty: a multi-prior approach. Rev. Financ. Stud. 20(1), 41–81 (2007)

    Article  Google Scholar 

  28. Gatheral, J., Schied, A.: Optimal trade execution under geometric Brownian motion in the almgren and Chriss framework. Int. J. Theor. Appl. Finance 14(3), 353–368 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gökay, S., Roch, A.F., Soner, H.M.: Liquidity models in continuous and discrete time. In: Nunno, G.D., Øksendal, B. (eds.) Advanced Mathematical Methods for Finance, pp. 333–365. Springer, Berlin (2011)

    Chapter  Google Scholar 

  30. Goldfarb, D., Iyengar, G.: Robust portfolio selection problems. Math. Oper. Res. 28(1), 1–38 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Golub, G.H., Loan, C.F.V.: Matrix Computation, 3rd. edn., Hopkins Fulfillment Service, Baltimore (1996)

    Google Scholar 

  32. Grant, M., Boyd, S.: (2009). Cvx: Matlab software for disciplined convex programming (web page and software). http://stanford.edu/~boyd/cvx

  33. Hager, W.W.: Lipschitz continuity for constrained processes. SIAM J. Control Optim. 17(3), 321–338 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Halldorsson, B.V., Tütüncü, R.H.: An interior-point method for a class of saddle-point problems. J. Optim. Theory Appl. 116(3), 559–590 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hausdorff, F.: Set Theory, 2nd edn. Chelsea, New York (1962)

    Google Scholar 

  36. Henrion, D., Lasserre, J.B., Löfberg, J.: Gloptipoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24(4–5), 761–779 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jondeau, E., Perilla, A., Rockinger, M.: Optimal liquidation strategies in illiquid markets. Swiss Finance Inst. Res. Pap. 9(24), 1–47 (2008)

    Google Scholar 

  38. Kim, S.-J., Boyd, S.: Robust efficient frontier analysis with a separable uncertainty model. Technical report, Department of Electrical Engineering, Stanford University, pp. 1–41 (2007)

  39. Kim, S.-J., Boyd, S.: A minimax theorem with applications to machine learning, signal processing, and finance. SIAM J. Optim. 19(3), 1344–1367 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lewis, A.S., Overton, M.L.: Eigenvalue optimization. Acta Numer. 5, 149–190 (1996)

    Article  MathSciNet  Google Scholar 

  41. Lu, Z.: A new cone programming approach for robust portfolio selection. Optim. Methods Softw. 26(1), 89–104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Moazeni, S., Coleman, T.F., Li, Y.: Optimal portfolio execution strategies and sensitivity to price impact parameters. SIAM J. Optim. 20(3), 1620–1654 (2010)

    Article  MathSciNet  Google Scholar 

  43. Moazeni, S., Coleman, T.F., Li, Y.: Optimal execution under jump models for uncertain price impact. J. Comput. Finance (2011, to appear)

  44. Papadopoulos, A.: Metric Spaces, Convexity and Nonpositive Curvature. European Mathematical Society, Zürich (2004)

    Book  Google Scholar 

  45. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP-hard. J. Glob. Optim. 1(1), 15–22 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  46. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1996)

    Google Scholar 

  47. Schied, A., Schöneborn, T.: Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets. Finance Stoch. 13(2), 181–204 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Simons, S.: Minimax theorems and their proofs. In: Du, D.-Z., Pardalos, P.M. (eds.) Minimax and Applications, pp. 1–23. Kluwer Academic, Dordrecht (1995)

    Chapter  Google Scholar 

  49. Sturm, J.: Using sedumi 1.02, a Matlab toolbox for optimization over symmetric cones. http://www.fewcal.kub.nl/sturm/software/sedumi.html/ (2001)

  50. Subramanian, A., Jarrow, R.: The liquidity discount. Math. Finance 11(4), 447–474 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. Takeda, A., Taguchi, S., Tütüncü, R.H.: Adjustable robust optimization models for nonlinear multi-period optimization. J. Optim. Theory Appl. 136(2), 275–295 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tikhonov, A.N., Arsemin, V.Y.: Solutions of Ill-Posed Problems. Winston and Sons, New York (1997)

    Google Scholar 

  53. Toh, K., Tutuncu, R.H., Todd, M.: Sdpt3 version 3.02. a Matlab software for semidefinite-quadratic-linear programming. http://www.math.nus.edu.sg/~mattohkc/sdpt3.html/ (2002)

  54. Torre, N., Ferrari, M.: Market Impact Model Handbook. BARRA Inc, Berkeley (1997)

    Google Scholar 

  55. Tütüncü, R.H., Koenig, M.: Robust asset allocation. Ann. Oper. Res. 132, 157–187 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhu, L., Coleman, T.F., Li, Y.: Min-max robust and cvar robust mean-variance portfolios. J. Risk 11(3), 55–86 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Moazeni.

Additional information

The authors would like to thank anonymous referees whose comments have improved the presentation of this paper.

T.F. Coleman acknowledges funding from the Ophelia Lazaridis University Research Chair (which he holds) and the National Sciences and Engineering Research Council of Canada. The views expressed herein are solely from the authors.

Y. Li acknowledges funding from Credit Suisse and the National Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moazeni, S., Coleman, T.F. & Li, Y. Regularized robust optimization: the optimal portfolio execution case. Comput Optim Appl 55, 341–377 (2013). https://doi.org/10.1007/s10589-012-9526-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-012-9526-3

Keywords

Navigation