Skip to main content
Log in

Convergence of the forward-backward sweep method in optimal control

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The Forward-Backward Sweep Method is a numerical technique for solving optimal control problems. The technique is one of the indirect methods in which the differential equations from the Maximum Principle are numerically solved. After the method is briefly reviewed, two convergence theorems are proved for a basic type of optimal control problem. The first shows that recursively solving the system of differential equations will produce a sequence of iterates converging to the solution of the system. The second theorem shows that a discretized implementation of the continuous system also converges as the iteration and number of subintervals increases. The hypotheses of the theorem are a combination of basic Lipschitz conditions and the length of the interval of integration. An example illustrates the performance of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  2. Atkinson, K.: An Introduction to Numerical Analysis, 2nd edn. Wiley, New York (1989)

    MATH  Google Scholar 

  3. Atkinson, K., Han, W.: Theoretical Numerical Analysis: A Functional Analysis Framework, 3rd edn. Springer, New York (2009)

    MATH  Google Scholar 

  4. Bertolazzi, E., Biral, F., Da Lio, M.: Symbolic-numeric efficient solution of optimal control problems for multibody systems. J. Comput. Appl. Math. 185, 404–421 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21, 193–207 (1998)

    Article  MATH  Google Scholar 

  6. Betts, J.T., Campbell, S.L., Engelsone, A.: Direct transcription solution of optimal control problems with higher order state constraints: theory vs practice. Optim. Eng. 8, 1–19 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edn. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  8. Birgin, E.G., Martínez, J.M.: Local convergence of an inexact-restoration method and numerical experiments. J. Optim. Theory Appl. 127, 229–247 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bulirsch, R., Nerz, E., Pesch, H.J., von Stryk, O.: Combining direct and indirect methods in optimal control: range maximization of a hang glider. In: Bulirsch, R., Miele, A., Stoer, J., Well, K.H. (eds.) Optimal Control, Calculus of Variations, Optimal Control Theory and Numerical Methods. Papers from the Second Conference Held at the University of Freiburg, Freiburg, May 26–June 1, 1991. International Series of Numerical Mathematics, vol. 111. Birkhäuser, Basel (1993)

    Google Scholar 

  10. Chernousko, F.L., Lyubshin, A.A.: Method of successive approximations for solutions of optimal control problems. Optim. Control Appl. Methods 3, 101–114 (1982)

    Article  MATH  Google Scholar 

  11. Chryssoverghi, I., Coletsos, I., Kokkinis, B.: Discretization methods for optimal control problems with state constraints. J. Comput. Appl. Math. 191, 1–31 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Darby, C.L., Hager, W.W., Rao, A.V.: Direct trajectory optimization using a variable low-order adaptive pseudospectral method. J. Spacecr. Rockets 48, 433–445 (2011)

    Article  Google Scholar 

  13. Dontchev, A.L.: Error estimates for a discrete approximation to constrained control problems. SIAM J. Numer. Anal. 18, 500–514 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dontchev, A.L., Hager, W.W., Malanowski, K.: Error bounds for the Euler approximation of a state and control constrained optimal control problem. Numer. Funct. Anal. Optim. 21, 653–682 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dontchev, A.L., Hager, W.W., Veliov, V.M.: Second-order Runge-Kutta approximations in control constrained optimal control. SIAM J. Numer. Anal. 38, 202–226 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dontchev, A.L., Hager, W.W.: The Euler approximation in state constrained optimal control. Math. Comput. 70, 173–203 (2000)

    Article  MathSciNet  Google Scholar 

  17. Elnagar, G., Kazemi, M.A., Razzaghi, M.: The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Autom. Control 40, 1793–1796 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Elnagar, G., Kazemi, M.A.: Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems. Comput. Optim. Appl. 11, 195–217 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Elnagar, G., Kazemi, M.A.: Nonlinear periodic optimal control: a pseudospectral Fourier approach. Numer. Funct. Anal. Optim. 25, 707–724 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Enright, W.H., Muir, P.H.: Efficient classes of Runge-Kutta methods for two-point boundary value problems. Computing 37, 315–334 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Garg, D., Patterson, M., Hager, W.W., Rao, A.V., Benson, D.A., Huntington, G.T.: A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46, 1843–1851 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Garg, D., Hager, W.W., Rao, A.V.: Pseudospectral methods for solving infinite-horizon optimal control problems. Automatica 47, 829–837 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Garg, D., Darby, C.L., Huntington, G.T., Hager, W.W., Rao, A.V.: Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method. Comput. Optim. Appl. 49, 335–358 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gong, Q., Kang, W., Ross, I.M.: A pseudospectral method for the optimal control of constrained feedback linearizable systems. IEEE Trans. Autom. Control 51, 1115–1129 (2006)

    Article  MathSciNet  Google Scholar 

  25. Hackbusch, W.: A numerical method for solving parabolic equations with opposite orientations. Computing 20, 229–240 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hager, W.W.: Rates of convergence for discrete approximations to unconstrained control problems. SIAM J. Numer. Anal. 13, 449–472 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Berlin (1996)

    MATH  Google Scholar 

  28. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  29. Keller, H.B.: Numerical Methods for Two-Point Boundary-Value Problems. Blaisdell, Waltham (1968)

    MATH  Google Scholar 

  30. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations: Analysis and Numerical Solution. Eur. Math. Soc., Zürich (2006)

    Book  MATH  Google Scholar 

  31. Kameswaran, S., Biegler, L.T.: Convergence rates for direct transcription of optimal control problems using collocation at Radau points. Comput. Optim. Appl. 41, 81–126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kameswaran, S., Biegler, L.T.: Advantages of nonlinear-programming-based methodologies for inequality path-constrained optimal control problems—a numerical study. SIAM J. Sci. Comput. 30, 957–981 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kang, W., Ross, I.M., Gong, Q.: Pseudospectral optimal control and its convergence theorems. In: Astolfi, A., Marconi, L. (eds.) Analysis and Design of Nonlinear Control Systems, pp. 109–124. Springer, Berlin (2008)

    Chapter  Google Scholar 

  34. Kaya, C.Y., Noakes, J.L.: Computational method for time-optimal switching control. J. Optim. Theory Appl. 117, 69–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kaya, C.Y., Lucas, S.K., Simakov, S.T.: Computations for bang-bang constrained optimal control using a mathematical programming formulation. Optim. Control Appl. Methods 25, 295–308 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kaya, C.Y., Martínez, J.M.: Euler discretization and inexact restoration for optimal control. J. Optim. Theory Appl. 134, 191–206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kaya, C.Y.: Inexact restoration for Runge-Kutta discretization of optimal control problems. SIAM J. Numer. Anal. 48, 1492–1517 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models. Chapman & Hall/CRC Press, Boca Raton (2007)

    MATH  Google Scholar 

  39. Mitter, S.K.: The successive approximation method for the solution of optimal control problems. Automatica 3, 135–149 (1966)

    Article  MATH  Google Scholar 

  40. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (2008)

    MATH  Google Scholar 

  41. Ross, I.M., Fahroo, F.: Legendre pseudospectral approximations of optimal control problems. In: Kang, W., Xiao, M., Borges, C. (eds.) New Trends in Nonlinear Dynamics and Control, and Their Applications. Lecture Notes in Control and Inform. Sci., vol. 295, pp. 327–342. Springer, Berlin (2003)

    Chapter  Google Scholar 

  42. Ross, I.M., Fahroo, F.: Pseudospectral methods for optimal motion planning of differentially flat systems. IEEE Trans. Autom. Control 49, 1410–1413 (2004)

    Article  MathSciNet  Google Scholar 

  43. Seierstad, A., Sydsaeter, K.: Optimal Control with Economic Applications. North-Holland, Amsterdam (1987)

    MATH  Google Scholar 

  44. Sirisena, H.R., Chou, F.S.: Convergence of the control parameterization Ritz method for nonlinear optimal control problems. J. Optim. Theory Appl. 29, 369–382 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  45. Teo, K.L., Goh, C.J., Wong, K.H.: A Unified Computational Approach to Optimal Control Problems. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 55. Longman, Harlow (1991)

    MATH  Google Scholar 

  46. Vlassenbroeck, J., Van Dooren, R.: A Chebyshev technique for solving nonlinear optimal control problems. IEEE Trans. Autom. Control 33, 333–349 (1988)

    Article  MATH  Google Scholar 

  47. Walther, A.: Automatic differentiation of explicit Runge-Kutta methods for optimal control. Comput. Optim. Appl. 36, 83–108 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael McAsey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McAsey, M., Mou, L. & Han, W. Convergence of the forward-backward sweep method in optimal control. Comput Optim Appl 53, 207–226 (2012). https://doi.org/10.1007/s10589-011-9454-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-011-9454-7

Keywords

Navigation