Skip to main content

Advertisement

Log in

Mesenchymal-to-epithelial transition determinants as characteristics of ovarian carcinoma effusions

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The present study investigated the intracellular regulation of E-cadherin in ovarian carcinoma. E-cadherin expression and regulation by Snail and Pak1 were studied in ES-2 and OVCAR-3 ovarian cancer cells in vitro. Twist1, Zeb1 and Vimentin mRNA expression and HIF-1α protein expression were analyzed in 80 and 189 clinical specimens, respectively. OVCAR-3 cells incubated with an anti-E-cadherin antibody formed smaller and looser spheroids compared to controls. Snail silencing using Small Hairpin RNA in ES-2 cells reduced invasion and MMP-2 activity, with unaltered cellular morphology. Using dominant negative (DN) and constitutively active (CA) Pak1 constructs, we found that DN Pak1 ES-2 and OVCAR-3 clones had reduced attachment to matrix proteins, invasion and MMP-2 activity compared to CA and wild-type cells. DN Pak1 ES-2 cells also bound less to LP9 mesothelial cells. DN Pak1 OVCAR-3 cells had lower Vimentin levels. Snail expression was lower in cultured effusions compared to primary carcinomas, and was cytoplasmic rather than nuclear. Twist1 (P < 0.001), Zeb1 (P = 0.003) and Vimentin (P = 0.03) mRNA expression was significantly higher in solid metastases compared to primary carcinomas and effusions. HIF-1α protein expression was lower in effusions compared to primary carcinomas and solid metastases (P = 0.033). Our data suggest that the previously reported E-cadherin re-expression in ovarian carcinoma effusions is regulated by Pak1. The transient nature of E-cadherin expression during ovarian carcinoma progression is probably the result of partial epithelial-to-mesenchymal transition (EMT) and the reverse process of mesenchymal-to-epithelial-like transition (MET). Expression of the EMT-related molecules Twist, Zeb1, Vimentin and HIF-1α is anatomic site-dependent in ovarian carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EMT:

Epithelial-to-mesenchymal transition

MET:

Mesenchymal-to-epithelial transition

OC:

Ovarian carcinoma

DA:

Dominant negative

CA:

Constitutively active

MMP:

Matrix metalloproteinases

TMA:

Tissue microarrays

References

  1. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    Article  CAS  PubMed  Google Scholar 

  2. Batlle E, Sancho E, Francí C et al (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89

    Article  CAS  PubMed  Google Scholar 

  3. Bolós V, Peinado H, Pérez-Moreno MA et al (2003) The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116:499–511

    Article  PubMed  Google Scholar 

  4. Hajra KM, Chen DY, Fearon ER (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62:1613–1618

    CAS  PubMed  Google Scholar 

  5. Rosivatz E, Becker I, Specht K et al (2002) Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol 161:1881–1891

    CAS  PubMed  Google Scholar 

  6. Vernon AE, LaBonne C (2004) Tumor metastasis: a new twist on epithelial-mesenchymal transitions. Curr Biol 14:R719–R721

    Article  CAS  PubMed  Google Scholar 

  7. Comijn J, Berx G, Vermassen P et al (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278

    Article  CAS  PubMed  Google Scholar 

  8. Aigner K, Dampier B, Descovich L et al (2007) The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 2:6979–6988

    Article  Google Scholar 

  9. Gotzmann J, Mikula M, Eger A et al (2004) Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis. Mutat Res 566:9–20

    Article  CAS  PubMed  Google Scholar 

  10. Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118–132

    CAS  PubMed  Google Scholar 

  11. Pecina-Slaus N (2003) Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell Int 3:17

    Article  PubMed  Google Scholar 

  12. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  13. Yokoyama K, Kamata N, Hayashi E et al (2001) Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncol 37:65–71

    Article  CAS  PubMed  Google Scholar 

  14. Poser I, Domínguez D, de Herreros AG et al (2001) Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J Biol Chem 276:24661–24666

    Article  CAS  PubMed  Google Scholar 

  15. Jiao W, Miyazaki K, Kitajima Y (2002) Inverse correlation between E-cadherin and Snail expression in hepatocellular carcinoma cell lines in vitro and in vivo. Br J Cancer 86:98–101

    Article  CAS  PubMed  Google Scholar 

  16. Yokoyama K, Kamata N, Fujimoto R et al (2003) Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas. Int J Oncol 22:891–898

    CAS  PubMed  Google Scholar 

  17. Miyoshi A, Kitajima Y, Kido S et al (2005) Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br J Cancer 92:252–258

    CAS  PubMed  Google Scholar 

  18. Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A et al (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83

    Article  CAS  PubMed  Google Scholar 

  19. Ikenouchi J, Matsuda M, Furuse M et al (2003) Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 116:1959–1967

    Article  CAS  PubMed  Google Scholar 

  20. Yang Z, Rayala S, Nguyen D et al (2005) Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail’s subcellular localization and functions. Cancer Res 65:3179–3184

    CAS  PubMed  Google Scholar 

  21. Goff BA, Mandel L, Muntz HG et al (2000) Ovarian carcinoma diagnosis. Cancer 89:2068–2075

    Article  CAS  PubMed  Google Scholar 

  22. Davidson B, Risberg B, Reich R et al (2003) Effusion cytology in ovarian cancer: new molecular methods as aids to diagnosis and prognosis. Clin Lab Med 23:729–754

    Article  PubMed  Google Scholar 

  23. Imai T, Horiuchi A, Wang C et al (2003) Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol 163:1437–1447

    CAS  PubMed  Google Scholar 

  24. Jin H, Yu Y, Zhang T et al (2010) Snail is critical for tumor growth and metastasis of ovarian carcinoma. Int J Cancer 126:2102–2111

    CAS  PubMed  Google Scholar 

  25. Pon YL, Zhou HY, Cheung AN et al (2008) p70 S6 kinase promotes epithelial to mesenchymal transition through snail induction in ovarian cancer cells. Cancer Res 68:6524–6532

    Article  CAS  PubMed  Google Scholar 

  26. Thériault BL, Shepherd TG, Mujoomdar ML et al (2007) BMP4 induces EMT and Rho GTPase activation in human ovarian cancer cells. Carcinogenesis 28:1153–1162

    Article  PubMed  Google Scholar 

  27. Kurrey NK, KA, Bapat SA (2005) Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol 97:155–165

  28. Blechschmidt K, Sassen S, Schmalfeldt B et al (2008) The E-cadherin repressor Snail is associated with lower overall survival of ovarian cancer patients. Br J Cancer 98:489–495

    Article  CAS  PubMed  Google Scholar 

  29. Tuhkanen H, Soini Y, Kosma VM et al (2009) Nuclear expression of Snail1 in borderline and malignant epithelial ovarian tumours is associated with tumour progression. BMC Cancer 9:289

    Article  PubMed  Google Scholar 

  30. Wang X, Ling MT, Guan XY et al (2004) Identification of a novel function of TWIST, a bHLH protein, in the development of acquired taxol resistance in human cancer cells. Oncogene 23:474–482

    Article  PubMed  Google Scholar 

  31. Terauchi M, Kajiyama H, Yamashita M et al (2007) Possible involvement of TWIST in enhanced peritoneal metastasis of epithelial ovarian carcinoma. Clin Exp Metastasis 24:329–339

    Article  CAS  PubMed  Google Scholar 

  32. Hosono S, Kajiyama H, Terauchi M et al (2007) Expression of twist increases the risk for recurrence and for poor survival in epithelial ovarian carcinoma patients. Br J Cancer 96:314–320

    Article  CAS  PubMed  Google Scholar 

  33. Yoshida J, Horiuchi A, Kikuchi N et al (2009) Changes in the expression of E-cadherin repressors, Snail, Slug, SIP1, and Twist, in the development and progression of ovarian carcinoma: the important role of Snail in ovarian tumorigenesis and progression. Med Mol Morphol 42:82–91

    Article  CAS  PubMed  Google Scholar 

  34. Bendoraite A, Knouf EC, Garg KS et al (2010) Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. Gynecol Oncol 116:117–125

    Article  CAS  PubMed  Google Scholar 

  35. Davidson B, Berner A, Nesland JM et al (2000) E-cadherin and alpha-, beta-, and gamma-catenin protein expression is up-regulated in ovarian carcinoma cells in serous effusions. J Pathol 192:460–469

    Article  CAS  PubMed  Google Scholar 

  36. Elloul S, Elstrand MB, Nesland JM et al (2005) Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer 103:1631–1643

    Article  CAS  PubMed  Google Scholar 

  37. Elloul S, Silins I, Tropé CG et al (2006) Expression of E-cadherin transcriptional regulators in ovarian carcinoma. Virchows Arch 449:520–528

    Article  CAS  PubMed  Google Scholar 

  38. Even-Faitelson L, Rosenberg M, Ravid S (2005) PAK1 regulates myosin II-B phosphorylation, filament assembly, localization and cell chemotaxis. Cell Signal 17:1137–1148

    Article  CAS  PubMed  Google Scholar 

  39. Peiró S, Escrivà M, Puig I et al (2006) Snail1 transcriptional repressor binds to its own promoter and controls its expression. Nucleic Acids Res 34:2077–2084

    Article  PubMed  Google Scholar 

  40. Reich R, Thompson EW, Iwamoto Y et al (1988) Effects of inhibitors of plasminogen activator, serine proteinases, and collagenase IV on the invasion of basement membranes by metastatic cells. Cancer Res 48:3307–3312

    CAS  PubMed  Google Scholar 

  41. Brassart B, Randoux A, Hornebeck W et al (1998) Regulation of matrix metalloproteinase-2 (gelatinase A, MMP-2), membrane-type matrix metalloproteinase-1 (MT1-MMP) and tissue inhibitor of metalloproteinases-2 (TIMP-2) expression by elastin-derived peptides in human HT-1080 fibrosarcoma cell line. Clin Exp Metastasis 16:489–500

    Article  CAS  PubMed  Google Scholar 

  42. Rayhman O, Klipper E, Muller L et al (2008) Small interfering RNA molecules targeting endothelin-converting enzyme-1 inhibit endothelin-1 synthesis and the invasive phenotype of ovarian carcinoma cells. Cancer Res 68:9265–9273

    Article  CAS  PubMed  Google Scholar 

  43. Lossos IS, Czerwinski DK, Wechser MA et al (2003) Optimization of quantitative real-time RT-PCR parameters for the study of lymphoid malignancies. Leukemia 17:789–795

    Article  CAS  PubMed  Google Scholar 

  44. Kumar R, Gururaj AE, Barnes CJ (2006) p21-activated kinases in cancer. Nat Rev Cancer 6:459–471

    Article  CAS  PubMed  Google Scholar 

  45. Hudson LG, Zeineldin R, Stack MS (2008) Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin Exp Metastasis 25:643–655

    Article  CAS  PubMed  Google Scholar 

  46. Sivertsen S, Berner A, Michael CW et al (2006) Cadherin expression in ovarian carcinoma and malignant mesothelioma cell effusions. Acta Cytol 50:603–607

    PubMed  Google Scholar 

  47. Zhou BP, Deng J, Xia W et al (2004) Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6:931–940

    Article  CAS  PubMed  Google Scholar 

  48. Kang HG, Jenabi JM, Zhang J et al (2007) E-cadherin cell-cell adhesion in ewing tumor cells mediates suppression of anoikis through activation of the ErbB4 tyrosine kinase. Cancer Res 67:3094–3105

    Article  CAS  PubMed  Google Scholar 

  49. Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7:415–428

    Article  CAS  PubMed  Google Scholar 

  50. Kleinberg L, Pradhan M, Trope’ CG et al (2008) Ovarian carcinoma cells in effusions show increased S-phase fraction compared to corresponding primary tumors. Diagn Cytopathol 36:637–644

    Article  PubMed  Google Scholar 

  51. Davidson B, Skrede M, Silins I et al (2007) Low molecular weight cyclin E forms differentiate ovarian carcinoma from cells of mesothelial origin and are associated with poor survival in ovarian carcinoma. Cancer 110:1264–1271

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Inger and Jon Fredriksen Foundation for Ovarian Cancer Research.

Reuven Reich is affiliated with the David R. Bloom Center for Pharmacy and the Brettler Center for Pharmacology at the Hebrew University of Jerusalem.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ben Davidson or Reuven Reich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elloul, S., Vaksman, O., Stavnes, H.T. et al. Mesenchymal-to-epithelial transition determinants as characteristics of ovarian carcinoma effusions. Clin Exp Metastasis 27, 161–172 (2010). https://doi.org/10.1007/s10585-010-9315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-010-9315-2

Keywords

Navigation