Ambrosetti W, Barbanti L (1999) Deep water warming in lakes: an indicator of climatic change. J Limnol 58:1–9. https://doi.org/10.4081/jlimnol.1999.1
Article
Google Scholar
Arvola L, George G, Livingstone DM, Järvinen M, Blenckner T, Dokulil MT, Jennings E, Aonghusa CN, Nõges P, Nõges T, Weyhenmeyer GA (2010) The impact of the changing climate on the thermal characteristics of lakes. In: George DG (ed) The impact of climate change on European lakes. Springer, Dordrecht, pp 85–101
Google Scholar
Austin JA, Colman SM (2007) Lake Superior summer water temperatures are increasing more rapidly than regional temperatures: a positive ice-albedo feedback. Geophys Res Lett 34:L06604. https://doi.org/10.1029/2006GL029021
Article
Google Scholar
Bates AE, McKelvie CM, Sorte CJB, Morley SA, Jones NAR, Mondon JA, Bird TJ, Quinn G (2013) Geographical range, heat tolerance and invasion success in aquatic species. Proc R Soc B 280:20131958. https://doi.org/10.1098/rspb.2013.1958
Article
Google Scholar
Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Nat Sci Data 5:180214. https://doi.org/10.1038/sdata.2018.214
Article
Google Scholar
Bennett JM, Calosi P, Clusella-Trullas D, Martínez B, Sunday J, Algar AC, Araújo MB, Hawkins BA, KeithS KI, Rahbek C, Rodríguez L, Singer A, Villalobos F, Olalla-Tárraga MÁ, Morales-Castilla I (2018) GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci Data 5:180022. https://doi.org/10.1038/sdata.2018.22
Article
Google Scholar
Bhateria R, Jain D (2016) Water quality assessment of lake water: a review. Sustain Water Resour Manag 2:161–173. https://doi.org/10.1007/s40899-015-0014-7
Article
Google Scholar
Butcher JB, Zi T, Schmidt M, Johnson TJ, Nover DM, Clark CM (2017) Estimating future temperature maxima in lakes across the United States using a surrogate modeling approach. PLoS One 12:e0183499. https://doi.org/10.1371/journal.pone.0183499
Article
Google Scholar
Carey J (2012) Global warming: faster than expected? Sci Am 307:50–55
Article
Google Scholar
Carvalho L, Miller C, Spears BM, Gunn IDM, Bennion H, Kirika A, May L (2012) Water quality of Loch Leven: responses to enrichment, restoration and climate change. Hydrobiologia 681:35–47. https://doi.org/10.1007/s10750-011-0923-x
Article
Google Scholar
Chen B (2015) Patterns of thermal limits of phytoplankton. J Plankton Res 37:285–292. https://doi.org/10.1093/plankt/fbv009
Article
Google Scholar
Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. PNAS 106:12788–12793. https://doi.org/10.1073/pnas.0902080106
Dokulil MT (2013) Old wine in new skins: eutrophication reloaded: global perspectives of potential amplification by climate warming, altered hydrological cycle and human interference. In: Lambert A, Roux C (eds) Eutrophication: causes, economic implications and future challenges. Nova Publishing, Hauppauge (NY), pp 95–125
Google Scholar
Dokulil MT (2014) Predicting summer surface water temperatures for large Austrian lakes in 2050 under climate change scenarios. Hydrobiologia 73:19–29. https://doi.org/10.1007/s10750-013-1550-5
Article
Google Scholar
Dokulil MT (2018) Long term changes of annual maximum lake surface water temperatures in 22 peri-alpine lakes of Austria. Proc 5th IAHR Europe Congress Trento. https://www.researchgate.net/publication/335137296_Long_term_changes_of_annual_maximum_lake_surface_water_temperatures_in_22_perialpine_lakes_of_Austria. Accessed 18 Apr 2021
Dokulil MT, Jagsch A, George G, Anneville A et al (2006) Twenty years of spatially coherent deep-water warming in lakes across Europe related to the North Atlantic oscillation. Limnol Oceanogr 51:2787–2793. https://doi.org/10.4319/lo.2006.51.6.2787
Article
Google Scholar
Elliott JA (2012) Is the future blue-green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria. Water Res 46:1364–1371. https://doi.org/10.1016/j.watres.2011.12.018
Article
Google Scholar
Foley B, Jones ID, Maberly SC, Rippey B (2012) Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshw Biol 57:278–289. https://doi.org/10.1111/j.1365-2427.2011.02662.x
Article
Google Scholar
Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2252
Article
Google Scholar
Godlewska M, Doroszczyk L, Długoszewski B, Kanigowska E, Pyka J (2014) Long-term decrease of the vendace population in Lake Pluszne (Poland)—result of global warming, eutrophication or both? Ecohydrol Hydrobiol 14:89–95. https://doi.org/10.1016/j.ecohyd.2014.01.004
Article
Google Scholar
Gray DK, Hampton SE, O’Reilly CM, Sharma S, Cohen RS (2018) How do data collection and processing methods impact the accuracy of long-term trend estimation in lake surface-water temperatures? Limnol Oceanogr Methods 16:504–515. https://doi.org/10.1002/lom3.10262
Article
Google Scholar
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeon Electron 4:9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm. Accessed 18 Apr 2021
Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global reanalysis. Quat J Roy MetSoc. https://doi.org/10.1002/qj.3803
Herzig A (1983a) The ecological significance of the relationship between temperature and duration of embryonic development in planktonic freshwater copepods. Hydrobiologia 100:65–91. https://doi.org/10.1007/BF00027423
Article
Google Scholar
Herzig A (1983b) Comparative studies on the relationship between temperature and duration of embryonic development of rotifers. Hydrobiologia 104:237–246. https://doi.org/10.1007/BF00045974
Article
Google Scholar
Herzig A, Winkler H (1986) The influence of temperature on the embryonic development of three cyprinid fishes, abramis brama, chalcalburnus chalcoides mento and vimba vimba. J Fish Biol 28:171–181. https://doi.org/10.1111/j.1095-8649.1986.tb05155.x
Article
Google Scholar
In supplement to, Riffler M et al (2015) Lake surface water temperatures of European Alpine lakes (1989–2013) based on the advanced very high-resolution radiometer (AVHRR) 1 km data set. Earth Syst Sci Data 7:1–17. https://doi.org/10.5194/essd-7-1-2015
Article
Google Scholar
Jacobson PC, Hansen GJA, Bethke BJ, Cross TK (2017) Disentangling the effects of a century of eutrophication and climate warming on freshwater lake fish assemblages. PLoS One 12:e0182667. https://doi.org/10.1371/journal.pone.0182667
Article
Google Scholar
Jeppesen E, Mehner T, Winfield IJ, Kangur K et al (2012) Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 694:1–39. https://doi.org/10.1007/s10750-012-1182-1
Article
Google Scholar
Johnson NC, Xie SP, Kosaka Y, Li X (2018) Increasing occurrence of cold and warm extremes during the recent global warming slowdown. Nat Commun 9:1724. https://doi.org/10.1038/s41467-018-04040-y
Article
Google Scholar
Keys PW, Galaz V, Dyer M, Matthews N, Folke C, Nyström M, Cornell SE (2019) Anthropocene risk. Nat Sust 2:667–673. https://doi.org/10.1038/s41893-019-0327-x
Article
Google Scholar
Kraemer BM, Anneville O, Chandra S, Dix M, Kuusisto E, Livingstone DM et al (2015) Morphometry and average temperature affect lake stratification responses to climate change. Geophys Res Lett 42:4981–4988. https://doi.org/10.1002/2015GL064097
Article
Google Scholar
Kraemer BM, Chandra S, Dell AI, Dix M, Kuusisto E, Livingstone DM et al (2017) Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism. Glob Chang Biol 23:1881–1890. https://doi.org/10.1111/gcb.13459
Article
Google Scholar
Lieberherr G, Wunderle S (2018) Lake surface water temperature derived from 35 years of AVHRR sensor data for European lakes. Remote Sens 10:990. https://doi.org/10.3390/rs10070990
Article
Google Scholar
Maberly SC, O’Donnell RA, Woolway RI, Cutler MEJ, Gong M, Jones JD, Merchant CJ, Miller CA, Politi E, Scott EM, Thackeray SJ, Tyler AN (2020) Global lake thermal regions shift under climate change. Nat Commun 11:1232. https://doi.org/10.1038/s41467-020-15108-z
Article
Google Scholar
Margesin R (2009) Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13:257–262. https://doi.org/10.1007/s00792-008-0213-3
Article
Google Scholar
O’Reilly CM, Sharma S, Gray DK, Hampton SE et al (2015) Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett 42:10,773–10,781. https://doi.org/10.1002/2015GL066235
Piccolroaz S, Woolway RI, Merchant CJ (2020) Global reconstruction of twentieth century lake surface water temperature reveals different warming trends depending on the climatic zone. Clim Chang 160:427–442. https://doi.org/10.1007/s10584-020-02663-y
Article
Google Scholar
Pilla RM, Williamson CE, Adamovich BV et al (2020) Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes. Sci Rep 10:20514. https://doi.org/10.1038/s41598-020-76873-x
Article
Google Scholar
Ptak M, Sojka M, Choiński A, Nowak B (2018) Effect of environmental conditions and morphometric parameters on surface water temperature in Polish Lakes. Water 10:580. https://doi.org/10.3390/w10050580
Article
Google Scholar
Ptak M, Sojka M, Kozłowski M (2019) The increasing of maximum lake water temperature in lowland lakes of Central Europe: case study of the Polish Lakeland. Ann Limnol Int J Limnol 55:1–11. https://doi.org/10.1051/limn/2019005
Article
Google Scholar
Riffler M, Lieberherr GD, Wunderle S (2015) Satellite-based daily mean lake surface water temperatures from Lake Mond, 1989-2013. PANGAEA. https://doi.org/10.1594/PANGAEA.830966
Rose KC, Winslow LA, Read JS, Hansen GJA (2016) Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity. Limnol Oceanogr Lett 1:44–53. https://doi.org/10.1002/lol2.10027
Article
Google Scholar
Roubeix V, Daufresne M, Argillier C, Dublon J, Maire A, Nicolas D, Raymond J-C, Danis P-A (2017) Physico-chemical thresholds in the distribution of fish species among French lakes. Knowl Manag Aquat Ecosyst 418:41. https://doi.org/10.1051/kmae/2017032
Article
Google Scholar
Schmid M, Köster O (2016) Excess warming of a central European lake driven by solar brightening. Water Resour Res 52:8103–8116. https://doi.org/10.1002/2016WR018651
Article
Google Scholar
Schneider P, Hook SJ (2010) Space observations of inland water bodies show rapid surface warming since 1985. Geophys Res Lett 37:L22405. https://doi.org/10.1029/2010GL045059
Article
Google Scholar
Sharma S, Jackson DA, Minns CK, Shuter BJ (2007) Will northern fish populations be in hot water because of climate change? Glob Chang Biol 13:2052–2064. https://doi.org/10.1111/j.1365-2486.2007.01426.x
Article
Google Scholar
Sharma S et al (2015) A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Sci Data 2:150008. long term Ecol res network. https://doi.org/10.6073/pasta/379a6cebee50119df2575c469aba19c5
Article
Google Scholar
Skowron R (2012) Spring warming period of polish lake waters in a yearly thermal cycle. Limnol Rev 12:147–157. https://doi.org/10.2478/v10194-012-0055-3
Article
Google Scholar
Steffen W, Persson Ǻ, Deutsch L, Zalasiewicz J, Williams M, Richardson K, Crumley C, Crutzen P, Folke C, Gordon L, Molina M, Ramanathan V (2011) The Anthropocene: from global change to planetary stewardship. Ambio 40:739–761. https://doi.org/10.1007/s13280-011-0185-x
Article
Google Scholar
Tao H, Fraedrich K, Menz C, Zhai J (2014) Trends in extreme temperature indices in the Poyang Lake Basin, China. Stoch Env Res Risk A 28:1543–1553. https://doi.org/10.1007/s00477-014-0863-x
Article
Google Scholar
Thomas MK, Aranguren-Cassis M, Kremer CT et al (2017) Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob Chang Biol 23:3269–3280. https://doi.org/10.1111/gcb.13641
Article
Google Scholar
Toffolon M, Piccolroaz S, Calamita S (2020) On the use of averaged indicators to assess lakes’ thermal response to changes in climatic conditions. Environ Res Lett 15:034060. https://doi.org/10.1088/1748-9326/ab763e
Article
Google Scholar
Torbick N, Ziniti B, Wu S, Linder E (2016) Spatiotemporal lake skin summer temperature trends in the northeast United States. Earth Interact 20:1–21. https://doi.org/10.1175/EI-D-16-0015.1
Article
Google Scholar
Vadadi-Fülöp C, Sipkay C, Mészáros G, Hufnagel L (2012) Climate change and freshwater zooplankton: what does it boil down to? Aquat Ecol 46:501–519. https://doi.org/10.1007/s10452-012-9418-8
Article
Google Scholar
Whitehead PG, Wilby RL, Battarbee RW, Kernan M, Wade AJ (2009) A review of the potential impacts of climate change on surface water quality. Hydrol Sci J 54:101–123. https://doi.org/10.1623/hysj.54.1.101
Article
Google Scholar
Whitney JE, Al-Chokhachy R, Bunnell DB, Caldwell CA, Cooke SJ, Eliason EJ et al (2016) Physiological basis of climate change impacts on north American inland fishes. Fisheries 41:332–345. https://doi.org/10.1080/03632415.2016.1186656
Article
Google Scholar
Winder M, Schindler DE (2004a) Climatic effects on the phenology of lake processes. Glob Chang Biol 10:1844–1856. https://doi.org/10.1111/j.1365-2486.2004.00849.x
Article
Google Scholar
Winder M, Schindler DE (2004b) Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85:2100–2106. https://doi.org/10.1890/04-0151
Article
Google Scholar
Winslow LA, Read JS, Hansen GJA, Rose KC, Robertson DM (2017) Seasonality of change: summer warming rates do not fully represent effects of climate change on lake temperatures. Limnol Oceanogr 62:2168–2178. https://doi.org/10.1002/lno.10557
Article
Google Scholar
Woolway RI, Maberly SC (2020) Climate velocity in inland standing waters. Nat Clim Chang 10:1124–1129. https://doi.org/10.1038/s41558-020-0889-7
Article
Google Scholar
Woolway RI, Merchant CJ (2017) Amplified surface temperature response of cold, deep lakes to inter-annual air temperature variability. Sci Rep 7:4130. https://doi.org/10.1038/s41598-017-04058-0
Article
Google Scholar
Woolway RI, Merchant CJ (2018) Intralake heterogeneity of thermal responses to climate change: a study of large northern hemisphere lakes. J Geophys Res Atmos 123:3087–3098. https://doi.org/10.1002/2017JD027661
Article
Google Scholar
Woolway RI, Jones ID, Feutmayer H, Maberly SC (2015) A comparison of the diel variability in epilimnetic temperature for five lakes in the English Lake District. Inland Waters 5:139–154. https://doi.org/10.5268/IW-5.2.748
Article
Google Scholar
Woolway RI, Dokulil MT, Marszelewski W, Schmid M, Bouffard D, Merchant CJ (2017) Warming of Central European lakes and their response to the 1980s climate regime shift. Clim Chang 142:505–520. https://doi.org/10.1007/s10584-017-1966-4
Article
Google Scholar
Woolway RI, Merchant CJ, Van Den Hoek J, Azorin-Molina C, Nõges P, Laas A, Mackay EB, Jones ID (2019a) Northern Hemisphere atmospheric stilling accelerates lake thermal responses to a warming world. Geophys Res Lett 46:11983–11992. https://doi.org/10.1029/2019GL082752
Article
Google Scholar
Woolway RI, Weyhenmayer GA, Schmid M, Dokulil MT, de Eyto E, Maberly SC, May L, Merchant CJ (2019b) Substantial increase in minimum lake surface temperature under climate change. Clim Chang 155:81–94. https://doi.org/10.1007/s10584-019-02465-y
Article
Google Scholar
Woolway RI, Jennings E, Shatwell T, Malgorzata G, Pierson DC, Maberly SC (2021) Lake heatwaves under climate change. Nature 589:402–407. https://doi.org/10.1038/s41586-020-03119-1
Article
Google Scholar
Woolway RI, Kraemer BM, Lenters JD, Merchant CJ, O’Reilly CM, Sharma S (2020) Global lake responses to climate change. Nat Rev Earth Environ 1:388–403. https://doi.org/10.1038/s43017-020-0067-5