Skip to main content
Log in

Unmagnetized sheath waves

  • Invited Papers and Discussion Summaries
  • Modelling Industrial Plasmas
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Plasmas bounded with metal walls have sheaths at their edges near the walls, along which electrostatic waves may propagate. We build on a long history of dielectric-bounded plasma waves, e.g., relating transverse (or series) resonances to cut-off frequencies of our sheath waves. We present kinetic simulations (PIC-MCC), confirming the dispersions and that the edge waves perturbed densities and potentials are largest at the edge; those of the body waves are largest in the body, all as if the two sets of waves are guided along their respective regions.

We also drive edge waves sufficiently strongly to cause electron heating producing ionization of the background gas, which maintains a plasma discharge. The heating profiles and density scaling of these resonant surface wave discharges differ markedly from the well known capacitive, inductive, and wave-coupled discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Tonks: Phys. Rev. 37 (1931) 1458.

    Article  ADS  Google Scholar 

  2. L. Tonks: Phys. Rev. 38 (1931) 1219.

    Article  ADS  Google Scholar 

  3. N. Herlofson: Arkiv. Fysik 3 (1951) 247.

    Google Scholar 

  4. A. Dattner: Phys. Rev. Letters. 10 (1963) 205.

    Article  ADS  Google Scholar 

  5. A.W. Trivelpiece and R.W. Gould: J. Appl. Phys. 30 (1959) 1784.

    Article  ADS  Google Scholar 

  6. D.J. Cooperberg: Physics of Plasmas 5 (1998) 853.

    Article  ADS  Google Scholar 

  7. D.J. Cooperberg: Physics of Plasmas 5 (1998) 862.

    Article  ADS  Google Scholar 

  8. D.J. Cooperberg and C.K. Birdsall: Plasma Sources Sci. Technol. 7 (1998) 96.

    Article  ADS  Google Scholar 

  9. D.J. Cooperberg and C.K. Birdsall: Plasma Sources Sci. Technol 7 (1998) 41.

    Article  ADS  Google Scholar 

  10. J.C. Nickel, J.V. Parker, and R.W. Gould: Physical Review Letters 11 (1963) 183.

    Article  ADS  Google Scholar 

  11. J.V. Parker, J.C. Nickel, and R.W. Gould: Phys. Fluids 7 (1964) 1489.

    Article  Google Scholar 

  12. B. O'Brien, R.W. Gould, and J. Parker: Phys. Rev. Letters 14 (1965) 630.

    Article  ADS  Google Scholar 

  13. B. Kerzar, K. Abrahamsen, and P. Weissglas: Applied Physics Letters 7 (1965) 155.

    Article  Google Scholar 

  14. V. Vahedi and M. Surendra: Comp. Phys. Comm. 87 (1995) 179.

    Article  ADS  Google Scholar 

  15. V. Vahedi, G. DiPeso, T.D. Rognlien, and C. Birdsall: Physics Fluids B 5 (1993) 2719.

    Article  ADS  Google Scholar 

  16. V.A. Godyak: Soviet RF Discharge Research. Delphic Assoc., 1986.

  17. M.A. Lieberman and A.J. Lichtenberg: Principles of Plasma Discharges and Materials Processing. Wiley, New York, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

References [6], [7], [8], and [9], from Cooperberg Ph.D. thesis, are available in bound form from birdsall@eecs.berkeley.edu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooperberg, D.J., Birdsall, C.K. Unmagnetized sheath waves. Czech J Phys 48 (Suppl 2), 81–90 (1998). https://doi.org/10.1007/s10582-998-0025-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-998-0025-9

Keywords

Navigation