Skip to main content
Log in

Characteristics of Electronegative Plasma Sheath with q-Nonextensive Electron Distribution

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The characteristics of sheath in a plasma system containing q-nonextensive electrons, cold fluid ions, and Boltzmann-distributed negative ions are investigated. A modified Bohm sheath criterion is derived by using the Sagdeev pseudopotential technique. It is found that the proposed Bohm velocity depends on the degree of nonextensivity (q), negative ion temperature to nonextensive electron temperature ratio (σ), and negative ion density (B). Using the modified Bohm sheath criterion, the sheath characteristics, such as the spatial distribution of the potential, positive ion velocity, and density profile, have been numerically investigated, which clearly shows the effect of negative ions, as well as the nonextensive distribution of electrons. It is found that, as the nonextensivity parameter and the electronegativity increases, the electrostatic sheath potential increases sharply and the sheath width decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Hatami, Phys. Plasmas 22, 023506 (2015).

    Article  ADS  Google Scholar 

  2. D. Bohm, The Characteristics of Electrical Discharges in Magnetic Fields, Ed. by A. Guthrie and R. Wakerling (McGraw-Hill, New York, 1949).

  3. K. Yasserian and M. Aslaninejad, Eur. Phys. J. D 67, 161 (2013).

    Article  ADS  Google Scholar 

  4. M. M. Hatami, B. Shokri, and A. R. Niknam, Phys. Plasmas 15, 123501 (2008).

    Article  ADS  Google Scholar 

  5. K. Annou, N. Saoula, and R. Tadjine, Int. J. Eng. Res. Technol. 2, 882 (2013).

    Google Scholar 

  6. Z. X. Wang, J. Y. Liu, X. Zou, Y. Liu, and X. G. Wang, Chin. Phys. Lett. 20, 1537 (2003).

    Article  ADS  Google Scholar 

  7. N. St. J. Braithwaite and J. E. Allen, J. Phys. D 21, 1733 (2008).

    Article  ADS  Google Scholar 

  8. H. Bailung, D. Baruah, A. R. Pal, and J. Chutia, Pramana J. Phys. 62, 1091 (2004).

    Article  ADS  Google Scholar 

  9. B.K. Sarma, A. Sarma, H. Bailung, and J. Chutia, Phys. Lett. A 244, 127 (1998).

    Article  ADS  Google Scholar 

  10. R. McAdams, D. B. King, A. J. T. Holmes, and E. Surrey, Rev. Sci. Instrum. 83, 02B109 (2012).

    Article  Google Scholar 

  11. A. Amin, D. Aossey, B. Ton Nguyen, H. S. Kim, J. L. Cooney and K. E. Lonngren, Phys. Fluids B 5, 3813 (1993).

    Article  ADS  Google Scholar 

  12. H. Ghomi, M. Khoramabadi, P. K. Shukla, and M. Ghorannevis, J. Appl. Phys. 108, 063302 (2010).

    Article  ADS  Google Scholar 

  13. J. J. Li, J. X. Ma, and Zi-an Wei, Phys. Plasmas 20, 063503 (2013).

    Article  ADS  Google Scholar 

  14. T. H. Chung, Phys. Plasmas 13, 024501 (2006).

    Article  ADS  Google Scholar 

  15. T. H. Chung, J. Korean Phys. Soc. 54, 2282 (2009).

    Article  Google Scholar 

  16. R. Moulick and K. S. Goswami, Phys. Plasmas 22, 033510 (2015).

    Article  ADS  Google Scholar 

  17. N. N. Safa, H. Ghomi, and A. R. Niknam, Phys. Plasmas 21, 082111 (2014).

    Article  ADS  Google Scholar 

  18. V. M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968).

    Article  ADS  Google Scholar 

  19. M. P. Leubner, J. Geophys. Res. 87, 6335 (1982).

    Article  ADS  Google Scholar 

  20. T. P. Armstrong, M. T. Paonessa, E. V. Bell, and S. M. Krimigis, J. Geophys. Res. 88, 8893 (1983).

    Article  ADS  Google Scholar 

  21. J. R. Asbridge, S. J. Bame, and I. B. Strong, J. Geophys. Res. 73, 5777 (1968).

    Article  ADS  Google Scholar 

  22. N. Divine and H. B. Garret, J. Geophys. Res. 88, 6889 (1983).

    Article  ADS  Google Scholar 

  23. Y. Futaana, S. Machida, Y. Saito, A. Matsuoka, and H. Hayakawa, J. Geophys. Res. 108, 151 (2003).

    Article  Google Scholar 

  24. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  ADS  Google Scholar 

  25. A. Renyi, Acta Math. Hungaria 6, 285 (1955).

    Article  Google Scholar 

  26. M. Ferdousi and A. A. Mamun, Braz. J. Phys. 45, 89 (2015).

    Article  ADS  Google Scholar 

  27. C. Tsallis, F. C. S. Barreto, and E. D. Loh, Phys. Rev. E 52, 1447 (1995).

    Article  ADS  Google Scholar 

  28. F. Ferro, A. Lavagno, and P. Quarati, Eur. Phys. J. A 21, 529 (2004).

    Article  ADS  Google Scholar 

  29. J. L. Du, Phys. Lett. A 329, 262 (2004).

    Article  ADS  Google Scholar 

  30. R. Silva, J. A. Alcaniz, and J. A. S. Lima, Physica. A 356, 509 (2005).

    Article  ADS  Google Scholar 

  31. S. Shaikh, A. Khan, and P. K. Bhatia, Astrophys. Space Sci. 312, 35 (2007).

    Article  ADS  Google Scholar 

  32. V. Munoz, Nonlin. Processes Geophys. 13, 237 (2006).

    Article  ADS  Google Scholar 

  33. F. Valentini, Phys. Plasmas 12, 072106 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  34. J. L. Du, Phys. Lett. A 320, 347 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  35. S. Shaikh, A. Khan, and P. K. Bhatia, Phys. Lett. A 372, 1451 (2008).

    Article  ADS  Google Scholar 

  36. A. Rafat, M. M. Rahman, M. S. Alam, and A. A. Mamun, Plasma Phys. Rep. 42, 792 (2016).

    Article  ADS  Google Scholar 

  37. Y. Liu, S. Q. Liu, and L. Zhou, Phys. Plasmas 20, 043702 (2013).

    Article  ADS  Google Scholar 

  38. M. Sharifian, H. R. Sharifinejad, M. Borhani Zarandiand, and A. R. Niknam, J. Plasma Phys. 80, 607 (2014).

    Article  ADS  Google Scholar 

  39. M. M. Hatami, Phys. Plasmas 22, 013508 (2015).

    Article  ADS  Google Scholar 

  40. D. R. Borgohain, K. Saharia, and K. S. Goswami, Phys. Plasmas 23, 122113 (2016).

    Article  ADS  Google Scholar 

  41. N. S. Saini and Shalini, Astrophys. Space Sci. 346, 155 (2013).

    Article  ADS  Google Scholar 

  42. S. Juneja and P. Bala, IJCA-ICAET, No. 3, 7 (2015).

    Google Scholar 

  43. R. N. Franklin and J. Snell, J. Plasma Phys. 64, 131 (2000).

    Article  ADS  Google Scholar 

  44. R. F. Fernsler and S. P. Slinker, Phys. Rev. E 71, 026401 (2005).

    Article  ADS  Google Scholar 

  45. Y. C. Ghim and N. Hershkowitz, Appl. Phys. Lett. 94, 151503, (2009).

    Article  ADS  Google Scholar 

  46. M. Tribeche, L. Djebarni, and R. Amour, Phys. Plasmas 17, 042114 (2010).

    Article  ADS  Google Scholar 

  47. L. A. Gougam and M. Tribeche, Phys. Plasmas 18, 062102 (2011).

    Article  ADS  Google Scholar 

  48. K. Takizawa, A. Kono, and K. Sasaki, Appl. Phys. Lett. 90, 011503 (2007).

    Article  ADS  Google Scholar 

  49. R. M. Crespo, J. I. F. Palop, M. A. Hernandez, S. B. del Pino, and J. Ballesteros, J. Appl. Phys. 96, 4777 (2004).

    Article  ADS  Google Scholar 

  50. L. Y. Liu and J. L. Du, Physica A 387, 4821 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Saharia.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borgohain, D.R., Saharia, K. Characteristics of Electronegative Plasma Sheath with q-Nonextensive Electron Distribution. Plasma Phys. Rep. 44, 137–144 (2018). https://doi.org/10.1134/S1063780X1801004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1801004X

Navigation