Skip to main content
Log in

Evolutionary sheath structure in magnetized collisionless plasma with electron inertia

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A classical hydrodynamic model is methodologically formulated to see the equilibrium properties of a planar plasma sheath in two-component magnetized bounded plasma. It incorporates the weak but finite electron inertia instead of asymptotically inertialess electrons. The effects of the externally applied oblique (relative to the bulk plasma flow) magnetic field are judiciously accented. It is, for the sake of simplicity, assumed that the relevant physical parameters (plasma density, electrostatic potential, and flow velocity) vary only in a direction normal to the confining wall boundary. It is noticed for the first time that the derived Bohm condition for sheath formation is modified conjointly by the electron inertia, magnetic field, and field orientation. It is manifested that the electron inertia in the presence of plasma gyrokinetic effects slightly enhances the ion Mach threshold value (typically, M i0 ≥ 1.139) toward the sheath entrance. This flow supercriticality is in contrast with the heuristic formalism (M i0 ≥ 1) for the zero-inertia electrons. A numerical illustrative scheme on the parametric sheath features on diverse nontrivial apposite arguments is constructed alongside ameliorative scope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Ahedo, Phys. Plasmas 4, 4419 (1997).

    Article  ADS  Google Scholar 

  2. D. Bohm, in The Characteristics of Electrical Discharges in Magnetic Fields, Ed. by A. Guthrie and R. Wakerling (McGraw-Hill, New York, 1949), p. 77.

    Google Scholar 

  3. B. Alterkop, S. Goldsmith, and R. L. Boxman, Contrib. Plasma Phys. 45, 485 (2005).

    Article  ADS  Google Scholar 

  4. K. U. Riemann, J. Seebacher, D. D. Tskhakaya, and S. Kuhn, Plasma Phys. Controlled Fusion 47, 1949 (2005).

    Article  ADS  Google Scholar 

  5. R. N. Franklin, J. Phys. D 36, R309 (2003).

    Article  ADS  Google Scholar 

  6. I. Langmuir, Phys. Rev. 33, 954 (1929).

    Article  ADS  Google Scholar 

  7. K. U. Riemann, Phys. Plasmas 4, 4158 (1997).

    Article  ADS  Google Scholar 

  8. U. Deka and C. B. Dwivedi, Braz. J. Phys. 40, 333 (2010).

    Article  Google Scholar 

  9. R. N. Franklin and J. Snell, Phys. Plasmas 8, 643 (2001).

    Article  ADS  Google Scholar 

  10. X. Zou, J. Y. Liu, Z. X. Wang, Y. Gong, Y. Liu, and X.-G. Wang, Chin. Phys. Lett. 21, 1572 (2004).

    Article  ADS  Google Scholar 

  11. R. Chodura, Phys. Fluids 25, 1628 (1982).

    Article  ADS  Google Scholar 

  12. D. L. Holland, B. D. Fried, and G. J. Morales, Phys. Fluids B 5, 1723 (1993).

    Article  ADS  Google Scholar 

  13. H. Schmitz, K. U. Riemann, and Th. Daube, Phys. Plasmas 3, 2486 (1996).

    Article  ADS  Google Scholar 

  14. P. C. Stangeby, Phys. Plasmas 2, 702 (1995).

    Article  ADS  Google Scholar 

  15. X. Zou, J. Y. Liu, Y. Gong, Z.-X. Wang, Y. Liu, and X.-G. Wang, Vacuum 73, 681 (2004).

    Article  ADS  Google Scholar 

  16. J. Loizu, P. Ricci, and C. Theiler, Phys. Rev. E 83, 016406 (2011).

    Article  ADS  Google Scholar 

  17. C. B. Dwivedi, P. K. Karmakar, and S. C. Tripathy, Astrophys. J. 663, 1340 (2007).

    Article  ADS  Google Scholar 

  18. M. Gohain and P. K. Karmakar, Europhys. Lett. 112, 45002 (2015).

    Article  ADS  Google Scholar 

  19. B. A. Alterkop, I. D. Dubinova, and A. E. Dubinov, JETP 102, 173 (2006).

    Article  ADS  Google Scholar 

  20. M. Gohain and P. K. Karmakar, Eur. Phys. J. D 70, 222 (2016).

    Article  ADS  Google Scholar 

  21. G. D. Severn, American J. Phys. 75, 92 (2007).

    Article  ADS  Google Scholar 

  22. P. K. Karmakar, U. Deka, and C. B. Dwivedi, Phys. Plasmas 12, 032105 (2005).

    Article  ADS  Google Scholar 

  23. P. K. Karmakar, U. Deka, and C. B. Dwivedi, Phys. Plasmas 13, 104702 (2006).

    Article  ADS  Google Scholar 

  24. U. Deka, C. B. Dwivedi, and H. Ramachandran, Phys. Scr. 73, 87 (2006).

    Article  ADS  Google Scholar 

  25. J. Ou and J. Yang, Phys. Plasmas 19, 113504 (2012).

    Article  ADS  Google Scholar 

  26. J. E. Allen, Contrib. Plasma Phys. 48, 400 (2008).

    Article  ADS  Google Scholar 

  27. M. M. Hatami, Plasma Sci. Technol. 15, 1169 (2013).

    Article  ADS  Google Scholar 

  28. X. Zou, M. Qiu, H. Liu, et al., Vacuum 83, 205 (2009).

    Article  ADS  Google Scholar 

  29. H. Liu, X. Zou, and M. Qiu, Plasma Sci. Technol. 16, 633 (2014).

    Article  ADS  Google Scholar 

  30. K. U. Riemann, J. Phys. D 24, 493 (1991).

    Article  ADS  Google Scholar 

  31. U. L. Rohde, G. C. Jain, A. K. Poddar, and A. K. Ghosh, Introduction to Integral Calculus (Wiley, New Jersey, 2012).

    MATH  Google Scholar 

  32. M. Khoramabadi, H. R. Ghomi, and M. Ghoranneviss, J. Plasma Fusion Res. 8, 1399 (2009).

    Google Scholar 

  33. H. Ghomi and M. Khoramabadi, J. Plasma Phys. 76, 247 (2010).

    Article  ADS  Google Scholar 

  34. J. C. Butcher, Appl. Num. Math. 24, 331 (1997).

    Article  Google Scholar 

  35. M. Khoramabadi, H. Ghomi, and M. Ghoranneviss, in Proceedings of the 19th International Symposium on Plasma Chemistry (ISPC-19), Bochum, 2009.

    Google Scholar 

  36. S. Kuhn, K. U. Riemann, N. Jelic, D. D. Tskhakaya, D. Tskhakaya, and M. Stanojevic, Phys. Plasmas 13, 013503 (2006).

    Article  ADS  Google Scholar 

  37. S. Robertson, Plasma Phys. Controlled Fusion 55, 093001 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Karmakar.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gohain, M., Karmakar, P.K. Evolutionary sheath structure in magnetized collisionless plasma with electron inertia. Plasma Phys. Rep. 43, 957–968 (2017). https://doi.org/10.1134/S1063780X17090021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17090021

Navigation