Skip to main content
Log in

A combined banding method that allows the reliable identification of chromosomes as well as differentiation of AT- and GC-rich heterochromatin

  • Original Article
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Сonstitutive heterochromatin areas are revealed by differential staining as C-positive chromosomal regions. These C-positive bands may greatly vary by location, size, and nucleotide composition. CBG-banding is the most commonly used method to detect structural heterochromatin in animals. The difficulty in identification of individual chromosomes represents an unresolved problem of this method as the body of the chromosome is stained uniformly and does not have banding pattern beyond C-bands. Here, we present the method that we called CDAG for sequential heterochromatin staining after differential GTG-banding. The method uses G-banding followed by heat denaturation in the presence of formamide with consecutive fluorochrome staining. The new technique is valid for the concurrent revealing of heterochromatin position due to differential banding of chromosomes and heterochromatin composition (AT-/GC-rich) in animal karyotyping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

αMEM:

Alpha minimum essential medium

ATrH:

AT-rich heterochromatin

CBG-banding:

C-bands revealed by barium hydroxide treatment followed by Giemsa staining

FISH:

Fluorescence in situ hybridization

CDAG:

Chromomycin A3-DAPI-after G-banding

Cen:

centromere

CMA3:

chromomycin A3

DABCO:

1,4-diazabicyclo[2,2,2]-octane

DAPI:

4′-6-diamidino-2-phenylindole

DIPI:

4-6-bis-(2-imidozolynyl-4H,5H)-2-phenylindole

DMSO:

Dimethyl sulfoxide

DPBS:

Dulbecco’s phosphate-buffered saline

EDTA:

Ethylenediaminetetraacetic acid

FBS:

Fetal bovine serum

GCrH:

GC-rich heterochromatin

GTG-banding (G-banding):

G-bands by trypsin followed by Giemsa staining

H:

heterochromatin

PBS:

Phosphate-buffered saline

RT:

room temperature

o/n:

overnight

References

  • Arrighi FE, Hsu TC (1971) Localization of heterochromatin in human chromosomes. Cytogenetics 10:81–86

    Article  CAS  Google Scholar 

  • Beh TT, MacKinnon RN, Kalitsis P (2016) Active centromere and chromosome identification in fixed cell lines. Mol Cytogenet 9(28)

  • Bella JL, Gosálvez J (1994) Banding human chromosomes using a combined C-banding-fluorochrome staining technique. Biotech Histochem 69:243–248

    Article  CAS  Google Scholar 

  • Brown SW (1966) Heterochromatin. Science 151:417–425

    Article  CAS  Google Scholar 

  • Chan FL, Wong LH (2012) Transcription in the maintenance of centromere chromatin identity. Nucleic Acids Res 40:11178–11188

    Article  CAS  Google Scholar 

  • Craig JM, Earle E, Canham P et al (2003) Analysis of mammalian proteins involved in chromatin modification reveals new metaphase centromeric proteins and distinct chromosomal distribution patterns. Hum Mol Genet 12:3109–3121

    Article  CAS  Google Scholar 

  • de la Maza LM, Sanchez O (1976) Simultaneous G and C banding of human chromosomes. J Med Genet 13:235–236

    Article  Google Scholar 

  • Demerec M, Slizynska H (1937) Mottled white 258-18 of drosophila melanogaster. Genetics 22:641–649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitri P, Caizzi R, Giordano E, Carmela Accardo M, Lattanzi G, Biamonti G (2009) Constitutive heterochromatin: a surprising variety of expressed sequences. Chromosoma 118:419–435

    Article  CAS  Google Scholar 

  • Distèche C, Hagemeuer A, Frederic J, Pargneaux D (1972) An abnormal large human chromosome identified as an end-to-end fusion of two X’s by combined results of the new banding techniques and microdensitometry. Clin Genet 3:388–395

    Article  Google Scholar 

  • Fernández R, Barragán MJL, Bullejos M et al (2002) New C-band protocol by heat denaturation in the presence of formamide. Hereditas 137:145–148

    Article  Google Scholar 

  • Genest FB, Morisset P, Patenaude RP (1986) Caryotype de la Mouffette rayée, Mephitis mephitis. Génétique Sélection Évolution 18:111–122

    Article  CAS  Google Scholar 

  • Graphodatsky AS, Radjabli SI (1988) Chromosomes of farm and laboratory mammals. ~ Nauka (ed. Baranov 0K), Novosibirsk. p 14–15

  • Heitz E (1928) Das Heterochromatin der Moose. Jahrbücher für Wissenschaftliche Botanik 69:762–818

  • Heng HH, Tsui LC (1993) Modes of DAPI banding and simultaneous in situ hybridization. Chromosoma 102:325–332

    Article  CAS  Google Scholar 

  • Hsu TC, Arrighi FE (1971) Distribution of constitutive heterochromatin in mammalian chromosomes. Chromosoma 34:243–253

    CAS  PubMed  Google Scholar 

  • Kulemzina AI, Proskuryakova AA, Beklemisheva VR, Lemskaya NA, Perelman PL, Graphodatsky AS (2016) Comparative chromosome map and heterochromatin features of the gray whale karyotype (Cetacea). Cytogenet Genome Res 148:25–34

    Article  CAS  Google Scholar 

  • Kurnit DM, Shafit BR, Maio JJ (1973) Multiple satellite deoxyribonucleic acids in the calf and their relation to the sex chromosomes. J Mol Biol 81:273–284

    Article  CAS  Google Scholar 

  • Li T, O’Brien PCM, Biltueva L et al (2004) Evolution of genome organizations of squirrels (Sciuridae) revealed by cross-species chromosome painting. Chromosom Res 12:317–335

    Article  Google Scholar 

  • Liu Y, Ye J, Fu B, Ng BL, Wang J, Su W, Yang F, Nie W (2011) Molecular cytogenetic characterization of the genome organization of the 6-banded armadillo (Euphractus sexcinctus). Cytogenet Genome Res 132:31–40

    Article  CAS  Google Scholar 

  • Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    Article  CAS  Google Scholar 

  • Mandahl N (1978) Variation in C-stained chromosome regions in European hedgehogs (Insectivora, Mammalia). Hereditas 89:107–128

    Article  CAS  Google Scholar 

  • Marchal JA, Acosta MJ, Nietzel H, Sperling K, Bullejos M, Díaz de la Guardia R, Sánchez A (2004) X chromosome painting in Microtus: origin and evolution of the giant sex chromosomes. Chromosom Res 12:767–776

    Article  CAS  Google Scholar 

  • Meyne J, Baker RJ, Hobart HH, Hsu TC, Ryder OA, Ward OG, Wiley JE, Wurster-Hill DH, Yates TL, Moyzis RK (1990) Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 99:3–10

    Article  CAS  Google Scholar 

  • Muller HJ (1930) Types of visible variations induced by X-rays inDrosophila. J Genet 22:299–334

    Article  Google Scholar 

  • Ohno S, Kaplan WD, Kinosita R (1959) Formation of the sex chromatin by a single X-chromosome in liver cells of Rattus norvegicus. Exp Cell Res 18:415–418

    Article  CAS  Google Scholar 

  • O’Brien SJ, Menninger JC, Nash WG (2006) An Atlas of Mammalian Genomes. John Wiley & Sons Publishers, New York, NY

  • Radic MZ, Lundgren K, Hamkalo BA (1987) Curvature of mouse satellite DNA and condensation of heterochromatin. Cell 50:1101–1108

    Article  CAS  Google Scholar 

  • Schnedl W (1978) Structure and variability of human chromosomes analyzed by recent techniques. Hum Genet 41:1–9

    Article  CAS  Google Scholar 

  • Schnedl W, Breitenbach M, Mikelsaar AV, Stranzinger G (1977a) Mithramycin and DIPI: a pair of fluorochromes specific for GC- and AT-rich DNA respectively. Hum Genet 36:299–305

    Article  CAS  Google Scholar 

  • Schnedl W, Mikelsaar AV, Breitenbach M, Dann O (1977b) DIPI and DAPI: fluorescence banding with only negligible fading. Hum Genet 36:167–172

    Article  CAS  Google Scholar 

  • Schwarzacher-Robinson T, Cram LS, Meyne J, Moyzis RK (1988) Characterization of human heterochromatin by in situ hybridization with satellite DNA clones. Cytogenet Cell Genet 47:192–196

    Article  CAS  Google Scholar 

  • Schweizer D (1976a) DAPI fluorescence of plant chromosomes prestained with actinomycin D. Exp Cell Res 102:408–413

    Article  CAS  Google Scholar 

  • Schweizer D (1976b) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58:307–324

    Article  CAS  Google Scholar 

  • Schweizer D, Nagl W (1976) Heterochromatin diversity in Cymbidium, and its relationship to differential DNA replication. Exp Cell Res 98:411–423

    Article  CAS  Google Scholar 

  • Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 298:971–972

    Article  Google Scholar 

  • Shevchenko AT, Mazurok NA, Slobodyanyuk SY, Zakian SM (2002) Comparative analysis of the MSAT-160 repeats in four species of common vole (Microtus, Arvicolidae). Chromosom Res 10:117–126

    Article  CAS  Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306

    Article  CAS  Google Scholar 

  • Verma RS, Dosik H (1980) Simultaneous G- and C- banding for human chromosomes. J Med Genet 17:72–73

    Article  CAS  Google Scholar 

  • Yasmineh WG, Yunis JJ (1970) Localization of mouse satellite DNA in constitutive heterochromatin. Exp Cell Res 59:69–75

    Article  CAS  Google Scholar 

  • Yasmineh W, Yunis J (1971) Satellite DNA in calf heterochromatin. Exp Cell Res 64:41–48

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Dr. David McMullen for providing the tissue for establishing the cell line used in this study. We acknowledge anonymous reviewers and the editor whose comments helped to improve the manuscript. We are thankful to Dr. Tatyana Kolesnikova for helpful discussion.

Funding

The work was supported by the Russian Science Foundation (RSF, 16-14-10009). The work on human karyotypes was supported by RFBR according to the research project No. 18-04-00826.

Author information

Authors and Affiliations

Authors

Contributions

NAL conceived, designed, performed research, and analyzed data. NAL, AIK, VRB, LSB, AAP, PLP conducted experiments. ASG, VRB analyzed data. JMH provided the critical sample. NAL wrote the manuscript. PLP, VRB, LSB edited manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Natalya A. Lemskaya.

Additional information

Responsible Editor: Fengtang Yang

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemskaya, N.A., Kulemzina, A.I., Beklemisheva, V.R. et al. A combined banding method that allows the reliable identification of chromosomes as well as differentiation of AT- and GC-rich heterochromatin. Chromosome Res 26, 307–315 (2018). https://doi.org/10.1007/s10577-018-9589-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-018-9589-9

Keywords

Navigation