Skip to main content

Advertisement

Log in

X chromosome painting in Microtus: Origin and evolution of the giant sex chromosomes

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Sex chromosomes in species of the genus Microtus present some characteristic features that make them a very interesting group to study sex chromosome composition and evolution. M. cabrerae and M. agrestis have enlarged sex chromosomes (known as ‘giant sex chromosomes’) due to the presence of large heterochromatic blocks. By chromosome microdissection, we have generated probes from the X chromosome of both species and hybridized on chromosomes from six Microtus and one Arvicola species. Our results demonstrated that euchromatic regions of X chromosomes in Microtus are highly conserved, as occurs in other mammalian groups. The sex chromosomes heterochromatic blocks are probably originated by fast amplification of different sequences, each with an independent origin and evolution in each species. For this reason, the sex heterochromatin in Microtus species is highly heterogeneous within species (with different composition for the Y and X heterochromatic regions in M. cabrerae) and between species (as the composition of M. agrestis and M. cabrerae sex heterochromatin is different). In addition, the X chromosome painting results on autosomes of several species suggest that, during karyotypic evolution of the genus Microtus, some rearrangements have probably occurred between sex chromosomes and autosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashley T (2002) X-autosome translocations, meiotic synapsis, chromosome evolution and speciation. Cytogenet Genome Res 96: 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Bullejos M, Sánchez A, Burgos M et al. (1999) Multiple mono- and polymorphic Y-linked copies of the SRY HMG-box in Microtidae. Cytogenet Cell Genet 86: 46–50.

    Article  PubMed  CAS  Google Scholar 

  • Burgos M, Jiménez R, Diaz de la Guardia R (1986) A rapid, simple and reliable combined method for G-banding mammalian and human chromosomes. Stain Technol 61: 257–260.

    PubMed  CAS  Google Scholar 

  • Burgos M, Jiménez R, Díaz de la Guardia R (1988a) Comparative study of G- and C-banded chromosome of five species of Microtidae: a chromosomal evolution analysis. Genome 30: 540–546.

    PubMed  CAS  Google Scholar 

  • Burgos M, Jiménez R, Olmos DM et al. (1988b) Heterogeneous heterochromatin and size variation in the sex chromosome of Microtus cabrerae. Cytogenet Cell Genet 47: 75–79.

    PubMed  CAS  Google Scholar 

  • Burgos M, Olmos DM, Jiménez R et al. (1990) Fluorescence banding in four species of Microtidae: an analysis of the evolutive changes of the constitutive heterochromatin. Genetica 81: 11–16.

    Article  PubMed  CAS  Google Scholar 

  • Chaline J, Graf JD (1988) Phylogeny of the Arvicolidae (Rodentia): Biochemical and paleontological evidence. J Mamm 69: 22–33.

    Google Scholar 

  • Chowdhary BP, Raudsepp T (2001). Chromosome painting in farm, pet and wild animal species. Methods Cell Sci 23: 37–55.

    Article  PubMed  CAS  Google Scholar 

  • Díaz de la Guardia R, Pretel A (1979) Comparative study of the karyotypes of two species of water vole: Arvicola sapidus and Arvicola terrestris (Rodentia, Microtinae). Caryologia 32: 183–189.

    Google Scholar 

  • Fernández R, Barragán MJL, Bullejos M et al. (2001) Molecular and cytogenetic characterization of highly repeated DNA sequence in the vole Microtus cabrerae. Heredity 87: 637–646.

    PubMed  Google Scholar 

  • Fernández R, Barragán MJL, Bullejos M et al. (2002) Mapping the SPY gene in Microtus cabrerae: a vole species with multiple SPY copies in males and females. Genome 45: 600–603.

    PubMed  Google Scholar 

  • Graves JA (1995) The evolution of mammalian sex chromosome and the origin of sex determining genes. Phil Trans R Soc Lond B Biol Sci 350: 305–312

    CAS  Google Scholar 

  • Howell RT, Millener R, Thorne S et al. (1994) Elucidation of structural abnormalities of the X chromosome using fluorescence in situ hybridisation with a Y chromosome painting probe. J Med Genet 31: 206–208.

    Article  PubMed  CAS  Google Scholar 

  • Jiménez R, Carnero A, Burgos M et al. (1991) Achiasmatic giant sex chromosome in the vole Microtus cabrerae (Rodentia, Microtidae). Cytogenet Cell Genet 57: 56–58.

    PubMed  Google Scholar 

  • Kalscheuer V, Singh AP, Nanda I et al. (1996) Evolution of the gonosomal heterochromatin of Microtus agrestis: rapid amplification of a large, multimeric, repeat unit containing a 3.0-kb (GATA)11-positive, middle repetitive element. Cytogenet Cell Genet 73: 171–178.

    PubMed  CAS  Google Scholar 

  • Kholodilov NG, Mayorov VI, Mullokandov MR et al. (1993) LINE-1 element in the vole Microtus subarvalis. Mamm Genome 4: 624–626.

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Griffin DK, O’Brien PC et al. (1998) Defining the anatomy of the Rangifer tarandus sex chromosomes. Chromosoma 107: 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Marchal JA, Acosta MJ, Bullejos M et al. (2003) Sex chromosomes, sex determination and sex linked sequences in Microtidae. Cytogenet Genome Res 10: 266–273.

    Google Scholar 

  • Mayorov VI, Rogozin IB, Adkison LR (1999) Characterization of several LINE-1 elements in Microtus kirgisorum. Mamm Genome 10: 724–729.

    Article  PubMed  CAS  Google Scholar 

  • Megías-Nogales B, Marchal JA, Acosta MJ et al. (2003) Sex chromosomes pairing in two Arvicolidae species: Microtus nivalis and Arvicola sapidus. Hereditas 138: 114–121.

    PubMed  Google Scholar 

  • Modi WS (1987a) Phylogenetic analyses of chromosomal banding patterns among the Neartic Arvicolidae (Mammalia, Rodentia). Sys Zool 36: 109–136.

    Google Scholar 

  • Modi WS (1987b) C-banding analyses and the evolution heterochromatin among arvicolid rodent. J Mamm 68: 704–714.

    Google Scholar 

  • Modi WS (1993a) Comparative analysis of heterochromatin in Microtus: sequence heterogeneity and localized expansion and contraction of satellite DNA arrays. Cytogenet Cell Genet 62: 142–148.

    Article  PubMed  CAS  Google Scholar 

  • Modi WS (1993b) Rapid, localized amplification of a unique satellite DNA family in the rodent Microtus chrotorrhinus. Chromosoma 102: 484–490.

    Article  PubMed  CAS  Google Scholar 

  • Müller S, Stanyon R, O’Brien PC et al. (1999) Defining the ancestral karyotype of all primates by multidirectional chromosome painting between tree shrews, lemurs and humans. Chromosoma 108: 393–400.

    PubMed  Google Scholar 

  • Nadachowski A (1991) Systematic, geographic variation and evolution of snow voles (Chionomys) based on dental characters. Acta Teriol 36: 1–45.

    Google Scholar 

  • Nanda I, Neitzel H, Sperling K et al. (1988) Simple GATCA repeats characterize the X chromosome heterochromatin in Microtus agrestis, European field vole (Rodentia, Cricetidae). Chromosoma 96: 213–219.

    Article  PubMed  CAS  Google Scholar 

  • Neitzel H, Kalscheuer V, Henschel S et al. (1998) Betaheterochromatin in mammals: evidence from studies in Microtus agrestis based on the extensive accumulation of L1 and non-L1 retroposons in the heterochromatin. Cytogenet Cell Genet 80: 165–172.

    Article  PubMed  CAS  Google Scholar 

  • Neitzel H, Kalscheuer V, Singh AP et al. (2002) Copy and paste: the impact of a new non-L1 retroposon on the gonosomal heterochromatin of Microtus agretis. Cytogenet Genome Res 96: 179–185.

    Article  PubMed  CAS  Google Scholar 

  • Nesterova TB, Duthie SM, Mazurok NA et al. (1998) Comparative mapping of the X chromosome in vole species of the genus Microtus. Chromosome Res 6: 41–48.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien SJ, Seuanez HN, Womack JE (1988) Mammalian genome organization: an evolutionary view. Annu Rev Genet 22: 323–351.

    PubMed  CAS  Google Scholar 

  • Raudsepp T, Lear TL, Chowdhary BP (2002) Comparative mapping in equids: the asine X chromosome is rearranged compared to horse and Hartmann’s mountain zebra. Cytogenet Genome Res 96: 206–209.

    Article  PubMed  CAS  Google Scholar 

  • Sánchez A, Burgos M, Jiménez R et al. (1989) Variable conservation of nucleolus organizer regions during karyotypic evolution in Microtidade. Genome 33: 119–122.

    Google Scholar 

  • Sharp P (1982) Sex chromosome pairing during male meiosis in marsupials. Chromosoma 86: 27–47.

    Article  PubMed  CAS  Google Scholar 

  • Singh AP, Henschel S, Sperling K et al. (2000) Differences in the meiotic pairing behavior of gonosomal heterochromatin between female and male Microtus agrestis: implication for the mechanism of heterochromatin amplification on the X and Y. Cytogenet Cell Genet 91: 253–260.

    Article  PubMed  CAS  Google Scholar 

  • Toder R, Wienberg J, Voullaire L et al. (1997) Shared DNA sequences between the X and Y chromosomes in the tammar wallaby — evidence for independent additions to eutherian and marsupial sex chromosomes. Chromosoma 106: 94–98.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox SA, Watson JM, Spencer JA et al. (1996) Comparative mapping identifies the fusion point of an ancient mammalian X-autosomal rearrangement. Genomics 35: 66–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchal, J.A., Acosta, M.J., Nietzel, H. et al. X chromosome painting in Microtus: Origin and evolution of the giant sex chromosomes. Chromosome Res 12, 767–776 (2004). https://doi.org/10.1007/s10577-005-5077-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-005-5077-0

Key words

Navigation