Skip to main content
Log in

Phase Diagram of Nanocarbon

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

In the phase diagram of carbon, the positions of the melting and thermodynamic-equilibrium curves of detonation nanodiamonds or ultrafine diamonds are found as functions of diamond particle size. The position of the set of triple points located in the ranges of pressure 13.5–16.5 GPa and temperature 2210–4470 K and determining the region of the liquid state of nanocarbon is determined. In the phase diagram of nanocarbon, the diamond region is divided into three parts according to the type of nanoparticles: nanodiamond, liquid nanocarbon (nanodrops), and amorphous nanocarbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. V. Volkov, V. V. Danilenko, and V. V. Elin, “Synthesis of diamond from the carbon of the explosive detonation products,” Fiz. Goreniya Vzryva, 26, No.3, 123–125 (1990).

    Google Scholar 

  2. V. V. Danilenko, Synthesis and Sintering of Diamond by Detonation [in Russian], Energoatomizdat, Moscow (2003).

    Google Scholar 

  3. I. D. Morokhov, L. I. Trusov, and S. P. Chizhik, Ultrafine Metallic Media [in Russian], Atomizdat, Moscow (1977).

    Google Scholar 

  4. Yu. I. Petrov, Physics of Fine Particles [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  5. I. D. Morokhov, L. I. Trusov, and V. N. Lapovok, Physical Phenomena in Disperse Phases [in Russian], Energoatomizdat, Moscow (1984).

    Google Scholar 

  6. Chen Quan, Yun Sou Rong, Huang Feng, Lei Ding Jing, “Study of formation of condensed carbon in detonation by analyzing graphite and diamond crystallites in soot,” in: 11th Int. Detonation Symp., Snowmass, Colorado, USA, Aug. 29–Sept. 4 (1998), pp. 214–215.

  7. S. A. Gubin, V. V. Odintsov, V. I. Pepekin, and S. S. Sergeev, “Effect of the shape and size of graphite and diamond crystals on the phase equilibrium of carbon and HE detonation parameters,” Khim. Fiz., 9, No.3, 401–417 (1990).

    Google Scholar 

  8. S. A. Gubin, V. V. Odintsov, V. I. Pepekin, and S. S. Sergeev, “Effect of the shape and size of graphite and diamond crystals on the phase equilibrium of carbon and HE detonation parameters,” in: IV All-Union Conf. on Detonation, Vol. 1 (1988), pp. 13–19.

    Google Scholar 

  9. M. van Thiel and F. H. Ree, “Properties of carbon clusters in TNT detonation products. Graphite-diamond transition,” J. Appl. Phys., 62, No.5, 1761–1767 (1987).

    Article  Google Scholar 

  10. S. B. Viktorov, S. A. Gubin, I. V. Maklashova, “Thermodynamic calculation of the phase diagram of ultrafine carbon,” in: Physical Chemistry of Disperse Systems, Proc. IV All-Union Conf., Moscow Physicotechnical Institute, Moscow (1999), pp. 195–196.

    Google Scholar 

  11. S. B. Viktorov, S. A. Gubin, I. V. Maklashova, “Equations of state of ultrafine particles of graphite and diamond,” in: Physical Chemistry of Disperse Systems, Proc. V All-Union Conf., Moscow Physicotechnical Institute, Moscow (2000), pp. 49–50.

    Google Scholar 

  12. S. V. Razorenov, G. I. Kanel’, and A. A. Ovchinnikov, “Recording shock waves by Manganin sensors and graphite-diamond transition pressures at elevated temperatures,” in: Detonation, Proc. II All-Union Conf. on Detonation, Chernogolovka, Issue 2 (1981), pp. 70–72.

    Google Scholar 

  13. A. E. Aleksenskii, M. V. Baidakova, A. Ya. Vul’, and V. I. Siklitskii, “Structure of diamond clusters, ” Fiz. Tverd. Tela, 41, No.4, 740–743 (1999).

    Google Scholar 

  14. A. E. Aleksenskii, M. V. Baidakova, A. Ya. Vul’, et al., “Diamond-graphite phase transition in ultrafine diamond clusters,” Fiz. Tverd. Tela, 39, No.6, 1125–1134 (1997).

    Google Scholar 

  15. I. Yu. Malkov and V. M. Titov, “Structure and properties of detonation soot particles,” in: Shock Compression of Condensed Matter 1995: Proc. of the Conf. of the American Physical Society Topical Group on Shock Compression of Condensed Matter (Seattle, USA, August 13–18, 1995), AIR Press, Part 2 (1995), pp. 783–786.

  16. A. L. Vereshchagin, “Phase diagram of ultrafine carbon,” Combust., Expl., Shock Waves, 38, No.3, 358–359 (2002).

    Google Scholar 

  17. V. F. Anisichkin and I. Yu. Mal’kov, “Thermodynamic stability of ultradispersed diamond phase,” Combust., Expl., Shock Waves, 24, No.5, 631–633 (1988).

    Google Scholar 

  18. P. Badziag, W. S. Verwoerd, W. P. Ellis, and N. R. Greiner, “Nanometer-sized diamonds are more stable than graphite,” Nature, 343, 244–245 (1990).

    Article  Google Scholar 

  19. V. V. Danilenko, “Thermodynamics of graphite to diamond transformation,” Combust., Expl., Shock Waves, 24, No.5, 633–637 (1988).

    Google Scholar 

  20. S. N. Zadumkin, “On the value of the interfacial surface energy of metals on the crystal-melt interface, ” Dokl. Akad. Nauk SSSR, 130, 4 (1960).

    Google Scholar 

  21. D. F. Fedoseev, N. V. Niovikov, and A. S. Vishnevskii (eds.), Diamond: Handbook [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  22. M. Togaya, “Thermophysical properties of carbon at high pressure,” in: Advanced Materials’96: Proc. of the 3rd NIRIM Int. Symp. on Advanced Materials (ISAM’96), Tsukuba, Jpn., March 4–8 (1996), pp. 251–256.

  23. A. M. Molodets, “Free energy of diamond,” Combust., Expl., Shock Waves, 34, No.4, 453–460 (1998).

    Google Scholar 

  24. V. N. Korobenko and A. I. Savvatimskiy, “Blackbody design for high temperature (1800 to 5500 K) of metals and carbon in liquid states under fast heating,” in: Temperature: Its Measurement and Control in Science and Industry, Vol. 7, New York (2003), pp. 783–788.

    Google Scholar 

  25. V. M. Titov, V. F. Anisichkin, and I. Yu. Mal’kov, “Synthesis of ultradispersed diamond in detonation waves,” Combust., Expl., Shock Waves, 25, No.3, 372–379 (1989).

    Google Scholar 

  26. S. B. Kormer, M. V. Sinitsyn, G. A. Kirillov, and V. D. Urlin, “Experimental determination of the temperatures of shock-compressed NaCl and KCl and their melting curves up to pressures of 700 kbar,” Zh. Eksp. Teor. Fiz., 48, 1033 (1965).

    Google Scholar 

  27. Huang Fenglei, Tong Yi, and Yun Shourong, “Synthesis mechanism and technology of ultrafine diamond from detonation,” Fiz. Tverd. Tela, 46, No.4, 601–604 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 41, No. 4, pp. 110–116, July–August, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilenko, V.V. Phase Diagram of Nanocarbon. Combust Explos Shock Waves 41, 460–466 (2005). https://doi.org/10.1007/s10573-005-0056-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-005-0056-5

Key words

Navigation