Skip to main content
Log in

Special features of the heat capacity of detonation nanocrystalline diamond

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The heat capacity of detonation nanocrystalline diamond has been studied by adiabatic calorimetry in the 60–300 K temperature range. It has been found that the heat capacity of commercial samples of nanodiamond exceeds that of bulk diamond by more than 30%. It has been shown that this excess is only partially caused by the impurities and for an impurity-free nanodiamond it is more than 15%. It has been proposed to explain this feature of the heat capacity by a contribution of surface carbon atoms into a low energy density of diamond phonon states. Based on the experimentally obtained temperature dependences of the heat capacity, the standard values of the enthalpy, entropy, and reduced Gibbs free energy of commercial and impurity-free nanodiamond have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dolmatov, V.Yu., Veretennikova, M.V., Marchukov, V.A., and Sushchev, V.G., Modern industrial potentialities of the nanodiamond synthesis, Physics Solids, 2004, vol. 46, no. 4, pp. 596–600.

    Google Scholar 

  2. Yu, S., Kang, M., Chang, H., Chen, K., and Yu, Y., Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity, J. Am. Chem. Soc., 2005, vol. 127, no. 50, pp. 17604–17605.

    Article  CAS  Google Scholar 

  3. Puzyr’, A., Pozdnyakova, I., and Bondar’, V., Development of a luminescent biochip using nanodiamonds and bacterial luciferase, Physics Solids, 2004, vol. 46, no. 4, pp. 740–742.

    Google Scholar 

  4. Huang, T., Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications, Diam. Relat. Mater., 2004, vol. 13, nos. 4-8, pp. 1098–1102.

    Article  CAS  Google Scholar 

  5. Huang, H., Pierstorff, E., Osawa, E., and Ho, D., Active nanodiamond hydrogels for chemotherapeutic delivery, Nano Lett., 2007, vol. 7, no. 11, pp. 3305–3314.

    Article  CAS  Google Scholar 

  6. Williams, O.A., Douhéret, O., Daenen, M., Haenen, K., Osawa, E., and Takahashi, M., Enhanced diamond nucleation on monodispersed nanocrystalline diamond, Chem. Phys. Lett., 2007, vol. 445, nos. 4-6, pp. 255–258.

    Article  CAS  Google Scholar 

  7. Behler, K., Stravato, A., Mochalin, V., Korneva, G., Yushin, G., and Gogotsi, Y., Nanodiamond-polymer composite fibers and coatings, ACS Nano, 2009, vol. 3, no. 2, pp. 363–369.

    Article  CAS  Google Scholar 

  8. Shenderova, O., Tyler, T., Cunningham, G., Ray, M., Walsh, J., Casulli, M., Hens, S., Mcguire, G., Kuznetsov, V., and Lipa, S., Nanodiamond and onion-like carbon polymer nanocomposites, Diam. Relat. Mater., 2007, vol. 16, nos. 4-7, pp. 1213–1217.

    Article  CAS  Google Scholar 

  9. Prasad, Eswar, Das, K., Barun, Moitra, et al., C.N.R., Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 32, pp. 13186–13189.

    Article  CAS  Google Scholar 

  10. Wang, L., Tan, Z., Meng, S., Liang, D., and Li, G., Enhancement of molar heat capacity of nanostructured Al2O3, J. Nanopart. Res., 2001, vol. 3, no. 5, pp. 483–487.

    Article  CAS  Google Scholar 

  11. Wang, L., Varushchenko, R.A., Tan, Z., Meng, S., Druzhinina, A., and Li, G., Heat capacity enhancement and thermodynamic properties of nanostructured amorphous SiO2, J. Non-Cryst. Solids, 2001, vol. 296, no. 1-2, pp. 139–142.

    Article  CAS  Google Scholar 

  12. Wang, J., Lu, K., and Wei, W., Comparison of properties of nanocrystalline and amorphous Ni-P alloys, J. Phys. D Appl. Phys., 1992, vol. 25, no. 5, pp. 808–812.

    Article  Google Scholar 

  13. Wang, T. and Li, G., Microstructure, thermal and mechanical properties of nanostructured Cu-5.5Ni-9.2Sn-6.5P, Solid State Commun., 1995, vol. 94, no. 3, pp. 201–203.

    Article  CAS  Google Scholar 

  14. Muratov, V.B., Vasiliev, A.A., Garbuz, V.V., and Duda, T.I., Effect of gas-forming impurities on the heat capacity of detonation nanocrystalline diamond, Nanostructured Materials Science, 2011, no. 1, pp. 23–31.

    Google Scholar 

  15. Pavone, P., Schütt, O., Karch, K., Strauch, D., Windl, W., Giannozzi, P., and Baroni, S., Ab initio lattice dynamics of diamond, Phys. Rev. B: Condens. Matter Mater. Phys., 1993, vol. 48, no. 5, pp. 3156–3163.

    Article  CAS  Google Scholar 

  16. Vasiliev, O.O., Muratov, V.B., and Duda, T.I., The study of low-temperature heat capacity of diamond: Calculation and experiment, J. Superhard Mater., 2011, vol. 32, no. 6, pp. 375–382.

    Article  Google Scholar 

  17. Muratov, V.B., Kulikov, L.M., Kenig, N.B., and Zakharov, V.V., Thermodynamic properties of 2H-WS2 nanocrystalline and micron powders at low temperatures, Nanostructured Materials Science, 2008, no. 1, pp. 3–13.

    Google Scholar 

  18. Kulakova, I., Surface chemistry of nanodiamonds, Phys. Solid State, 2004, vol. 46, no. 4, pp. 636–643.

    Article  CAS  Google Scholar 

  19. Adiga, S.P., Adiga, V.P., Carpick, R.W., and Brenner, D.W., Vibrational properties and specific heat of ultrananocrystalline diamond: Molecular dynamics simulations, J. Phys. Chem. C, 2011, vol. 115, no. 44, http://paperpilecom/b/Kzow27/KWgJ, pp. 21691–21699.

    Article  CAS  Google Scholar 

  20. Kruger, A., Kataoka, F., Ozawa, M., Fujino, T., Suzuki, Y., Aleksenskii, A., Vul, A., and Osawa, E., Unusually tight aggregation in detonation nanodiamond: Identification and disintegration, Carbon, 2005, vol. 43, no. 8, pp. 1722–1730.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Vasiliev.

Additional information

Original Ukrainian Text © O.O. Vasiliev, V.B. Muratov, L.M. Kulikov, V.V. Garbuz, T.I. Duda, 2015, published in Sverkhtverdye Materialy, 2015, Vol. 37, No. 6, pp. 34–42.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasiliev, O.O., Muratov, V.B., Kulikov, L.M. et al. Special features of the heat capacity of detonation nanocrystalline diamond. J. Superhard Mater. 37, 388–393 (2015). https://doi.org/10.3103/S1063457615060039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457615060039

Keywords

Navigation