Skip to main content
Log in

Diamond-like phases formed from fullerene-like clusters

  • Fullerenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The geometrically optimized structure and properties of thirteen diamond-like carbon phases formed by linking or combining fullerene-like clusters (C4, C6, C8, C12, C16, C24, or C48) have been investigated. Atoms in the structures of these phases are located in crystallographically equivalent positions. The calculations have been performed using the density functional theory in the generalized gradient approximation. The calculated values of the structural characteristics and properties (sublimation energies, bulk moduli, band gaps, X-ray diffraction patterns) of the studied diamond-like phases differ significantly from the corresponding values for cubic diamond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sh. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).

    Article  ADS  Google Scholar 

  2. W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature (London) 347, 354 (1990).

    Article  ADS  Google Scholar 

  3. L. Euler, Novi Comment. Acad. Sci. Petropolitanae 4, 140 (1758).

    Google Scholar 

  4. L. N. Sidorov, M. A. Yurovskaya, A. Ya. Borshchevskii, I. V. Trushkov, and I. N. Ioffe, Fullerenes (Ekzamen, Moscow, 2004) [in Russian].

    Google Scholar 

  5. E. Sheka, Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics (CRC Press, Boca Raton, Florida, 2011).

    Book  Google Scholar 

  6. E. Osawa, Perspectives of Fullerene Nanotechnology (Kluwer, Dordrecht, 2002).

    Book  Google Scholar 

  7. M. Nunez-Regueiro, P. Monceau, A. Rassat, P. Bernier, and A. Zahab, Nature (London) 354, 289 (1991).

    Article  ADS  Google Scholar 

  8. S. J. Duclos, K. Brister, R. C. Haddon, A. R. Kortan, and F. A. Thiel, Nature (London) 351, 380 (1991).

    Article  ADS  Google Scholar 

  9. C. S. Yoo and W. J. Nellis, Science (Washington) 254, 1489 (1991).

    Article  ADS  Google Scholar 

  10. F. Moshary, N. H. Chen, I. F. Silvera, C. A. Brown, Sh. C. Dorn, M. S. de Vries, and D. S. Bethune, Phys. Rev. Lett. 69, 466 (1992).

    Article  ADS  Google Scholar 

  11. Y. lwasa, T. Arima, R. M. Fleming, T. Siegrist, O. Zhou, R. C. Haddon, L. J. Rothberg, K. B. Lyons, Sh. L. Carter, Jr., A. F. Hebard, R. Tycko, G. Dabbagh, J. J. Krajewski, G. A. Thomas, and T. Yagi, Science (Washington) 264, 1570 (1994).

    Article  ADS  Google Scholar 

  12. I. O. Bashkin, V. I. Rashchupkin, A. F. Gurov, A. P. Moravsky, O. G. Rybchenkot, N. P. Kobelev, Ya. M. Soifer, and E. G. Ponyatovsky, J. Phys.: Condens. Matter 6, 7491 (1994).

    ADS  Google Scholar 

  13. V. V. Brazhkin, A. G. Lyapin, Yu. V. Antonov, S. V. Popova, Yu. A. Klyuev, A. M. Naletov, and N. N. Mel’nik, JETP Lett. 62 (4), 350 (1995).

    ADS  Google Scholar 

  14. M. Nunez-Regueiro, P. Monceau, and J.-L. Hodeau, Nature (London) 355, 237 (1992).

    Article  ADS  Google Scholar 

  15. J.-L. Hodeau, J. M. Tonnerre, B. Bouchet-Fabre, M. Nunez-Regueiro, J. J. Capponi, and M. Perroux, Phys. Rev. B: Condens. Matter 50, 10311 (1994).

    Article  ADS  Google Scholar 

  16. H. Hirai, K.-I. Kondo, N. Yoshizawa, and M. Shiraishi, Appl. Phys. Lett. 64, 1797 (1994).

    Article  ADS  Google Scholar 

  17. J. K. Burdett and S. Lee, J. Am. Chem. Soc. 107, 3063 (1985).

    Article  Google Scholar 

  18. V. V. Pokropivny and A. V. Pokropivny, Phys. Solid State 46 (2), 392 (2004).

    Article  ADS  Google Scholar 

  19. V. L. Bekenev and V. V. Pokropivny, Phys. Solid State 48 (7), 1405 (2006).

    Article  ADS  Google Scholar 

  20. X.-L. Sheng, Q.-B. Yan, F. Ye, Q.-R. Zheng, and G. Su, Phys. Rev. Lett. 106, 155703 (2011).

    Article  ADS  Google Scholar 

  21. X.-Q. Chen, H. Niu, C. Franchini, D. Li, and Y. Li, Phys. Rev. B: Condens. Matter 84, 121405(R) (2011).

    Article  ADS  Google Scholar 

  22. A. Pokropivny and S. Volz, Phys. Status Solidi B 249 (9), 1704 (2012).

    Article  ADS  Google Scholar 

  23. M. Hu, F. Tian, Z. Zhao, Q. Huang, B. Xu, Li-M. Wang, H.-T. Wang, Y. Tian, and J. He, J. Phys. Chem. C 116, 24233 (2012).

    Article  Google Scholar 

  24. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 55 (8), 1754 (2013).

    Article  ADS  Google Scholar 

  25. E. A. Belenkov and V. A. Greshnyakov, New Carbon Mater. 28 (4), 273 (2013).

    Article  Google Scholar 

  26. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 57 (1), 205 (2015).

    Article  ADS  Google Scholar 

  27. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 57 (6), 1253 (2015).

    Article  ADS  Google Scholar 

  28. E. A. Belenkov, M. M. Brzhezinskaya, and V. A. Greshnyakov, Diamond Relat. Mater. 50, 9 (2014).

    Article  ADS  Google Scholar 

  29. E. A. Belenkov and V. A. Greshnyakov, J. Exp. Theor. Phys. 119 (1), 101 (2014).

    Article  ADS  Google Scholar 

  30. N. L. Allinger, Adv. Phys. Org. Chem. 13, 1 (1976)

    MathSciNet  Google Scholar 

  31. N. L. Allinger, J. Am. Chem. Soc. 99 (25), 8127 (1977).

    Article  Google Scholar 

  32. P. Hohenberg and W. Kohn, Phys. Rev. [Sect.] B 136 (3B), 864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  33. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, et al., J. Phys.: Condens. Matter. 21 (39), 395502 (2009).

    Google Scholar 

  34. A. V. Arbuznikov, J. Struct. Chem. 48 (Suppl.), S1 (2007).

    Article  Google Scholar 

  35. Sh. J. Monkhorst and J. D. Pack, Phys. Rev. B: Solid State 13 (12), 5188 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  36. V. A. Greshnyakov and E. A. Belenkov, Russ. Phys. J. 57 (6), 731 (2014).

    Article  Google Scholar 

  37. Ya. S. Umanskii, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, X-Ray Diffraction and Electron Microscopy (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  38. V. A. Greshnyakov and E. A. Belenkov, J. Exp. Theor. Phys. 113 (1), 86 (2011).

    Article  ADS  Google Scholar 

  39. Sh. E. Swanson and R. K. Fuyat, Standard X-Ray Diffraction Powder Patterns. Circular 539 (National Bureau of Standards, Washington, 1953), Vol. II, p. 5.

    Google Scholar 

  40. F. P. Bundy and J. S. Kasper, J. Chem. Phys. 46 (9), 3437 (1967).

    Article  ADS  Google Scholar 

  41. R. B. Aust and Sh. G. Drickamer, Science (Washington) 140, 817 (1963).

    Article  ADS  Google Scholar 

  42. I. Sanc, Pattern: 00-041-1478. Graphite-2H, Polytechna (ICDD Grant-in-Aid Foreign Trade Corporation, Panska, Czechoslovakia, 1990).

    Google Scholar 

  43. D. E. McCready and M. S. Alnajjar, Powder Diffr. 9 (2), 93 (1994).

    Article  ADS  Google Scholar 

  44. G. V. Narasimha Rao, V. S. Sastry, M. Premila, A. Bharathi, C. S. Sundar, Y. Hariharan, V. Seshagiri, and T. S. Radhakrishnan, Powder Diffr. 11 (1), 5 (1996).

    Article  ADS  Google Scholar 

  45. G. Maier, S. Pfriem, U. Schafer, and R. Matusch, Angew. Chem., Int. Ed. Engl. 17 (7), 520 (1978).

    Article  Google Scholar 

  46. T. J. Katz and N. Acton, J. Am. Chem. Soc. 95 (8), 2738 (1973).

    Article  Google Scholar 

  47. P. E. Eaton and T. W. Cole, Jr., J. Am. Chem. Soc. 86, 962 (1964)

    Article  Google Scholar 

  48. P. E. Eaton and T. W. Cole, Jr., J. Am. Chem. Soc. 86, 3157 (1964).

    Article  Google Scholar 

  49. The Chemistry of Cyclobutanes, Ed. by Z. Rappoport and J. Liebman (Wiley, Chichester, 2005).

  50. A. M. Rao, M. Menon, K.-A. Wang, P. C. Eklund, K. R. Subbaswamy, D. S. Cornett, M. A. Duncan, and I. J. Amster, Chem. Phys. Lett. 224, 106 (1994).

    Article  ADS  Google Scholar 

  51. J. Onoe, A. Nakao, and K. Takeuchi, Phys. Rev. B: Condens. Matter 55 (15), 10051 (1997).

    Article  ADS  Google Scholar 

  52. A. N. Enyashin and A. L. Ivanovskii, Phys. Status Solidi B 248 (8), 1879 (2011).

    Article  ADS  Google Scholar 

  53. J. Nisar, X. Jiang, B. Pathak, J. Zhao, T. W. Kang, and R. Ahuja, Nanotechnology 23 (38), 385 704 (2012).

    Article  Google Scholar 

  54. A. E. Kochengin, T. E. Belenkova, V. M. Chernov, and E. A. Belenkov, Vestn. Chelyab. Gos. Univ., Fiz. 25 (316), 40 (2013).

    Google Scholar 

  55. Q. Song, B. Wang, K. Deng, X. Feng, M. Wagner, J. D. Gale, K. Mullen, and L. Zhi, J. Mater. Chem. C 1 (1), 38 (2013).

    Article  Google Scholar 

  56. R. A. Andrievskii and I. I. Spivak, Strength of High- Melting Compounds and Materials on Their Base (Metallurgiya, Chelyabinsk, 1989) [in Russian].

    Google Scholar 

  57. Gmelins Handbuch der anorganischen Chemie, Part B: Silicium, 8th ed. (Chemie, Weinheim, 1959).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Belenkov.

Additional information

Original Russian Text © E.A. Belenkov, V.A. Greshnyakov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 11, pp. 2262–2271.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belenkov, E.A., Greshnyakov, V.A. Diamond-like phases formed from fullerene-like clusters. Phys. Solid State 57, 2331–2341 (2015). https://doi.org/10.1134/S1063783415110062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415110062

Keywords

Navigation