Skip to main content
Log in

Expression of P2X3 and P2X5 Myenteric Receptors Varies During the Intestinal Postnatal Development in the Guinea Pig

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

P2X3 receptor expression in various tissues appears to be modulated by age. In the present study, we used single cell RT-PCR to determine the number of P2X3 positive myenteric neurons at different stages of guinea pig postnatal development, and we tested if similar changes also occur to other myenteric P2X receptors. Moreover, we carried out whole-cell recordings using Patch Clamp techniques to determine possible changes in P2X receptors sensitivity to ATP and α,β-methylene ATP (α,β-meATP) between newborn and adult animals. Our data indicate that P2X3 subunit transcripts are present in a larger number of myenteric neurons from newborn guinea pigs whereas P2X5 mRNA is found more frequently in adults. Expression of P2X2 and P2X4 transcripts does not change during postnatal development. In newborn animals, virtually all neurons expressing P2X3 also expressed P2X2 transcripts. This is important because these two subunits are known to form heteromeric channels. ATP potency to activate P2X receptors in neurons of both newborn and adult animals was the same. α,β-meATP, a known P2X3 receptor agonist, induces only a marginal current despite the fact of the higher presence of P2X3 subunits in newborns. These findings imply that P2X3 subunits are mainly forming heteromeric, α,β-meATP insensitive channels perhaps because P2X3 contributes with only one subunit to the heterotrimers while the other subunits could be P2X2, P2X4, or P2X5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barajas-Lopez C, Huizinga JD, Collins SM, Gerzanich V, Espinosa-Luna R, Peres AL (1996) P2X-purinoceptors of myenteric neurones from the guinea-pig ileum and their unusual pharmacological properties. Br J Pharmacol 119:1541–1548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barajas-Lopez C, Montano LM, Espinosa-Luna R (2002) Inhibitory interactions between 5-HT3 and P2X channels in submucosal neurons. Am J Physiol Gastrointest Liver Physiol 283:G1238–G1248

    CAS  PubMed  Google Scholar 

  • Barclay J, Patel S, Dorn G, Wotherspoon G, Moffatt S, Eunson L, Abdel’al S, Natt F, Hall J, Winter J, Bevan S, Wishart W, Fox A, Ganju P (2002) Functional downregulation of P2X3 receptor subunit in rat sensory neurons reveals a significant role in chronic neuropathic and inflammatory pain. J Neurosci 22:8139–8147

    CAS  PubMed  Google Scholar 

  • Bhatt S, Diaz R, Trainor PA (2013) Signals and switches in Mammalian neural crest cell differentiation. Cold Spring Harb Perspect Biol 5(2):a008326

    Article  PubMed  Google Scholar 

  • Bian X, Ren J, DeVries M, Schnegelsberg B, Cockayne DA, Ford AP, Galligan JJ (2003) Peristalsis is impaired in the small intestine of mice lacking the P2X3 subunit. J Physiol 551:309–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bo X, Kim M, Nori S, Schoepfer R, Burnstock G, North R (2003) Tissue distribution of P2X4 receptors studied with an ectodomain antibody. Cell Tissue Res 313:159–224

    Article  CAS  PubMed  Google Scholar 

  • Bradbury EJ, Burnstock G, McMahon SB (1998) The expression of P2X3 purinoreceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Mol Cell Neurosci 12:256–268

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brosenitsch TA, Adachi T, Lipski J, Housley GD, Funk GD (2005) Developmental downregulation of P2X3 receptors in motoneurons of the compact formation of the nucleus ambiguus. Eur J Neurosci 22:809–824

    Article  PubMed  Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    CAS  PubMed  Google Scholar 

  • Burnstock G, Ulrich H (2011) Purinergic signaling in embryonic and stem cell development. Cell Mol Life Sci 68:1369–1394

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Verkhratsky A (2012) Purinergic signalling and the nervous system. Springer, Heidelberg

    Book  Google Scholar 

  • Castelucci P, Robbins HL, Poole DP, Furness JB (2002) The distribution of purine P2X(2) receptors in the guinea-pig enteric nervous system. Histochem Cell Biol 117:415–422

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377:428–431

    Article  CAS  PubMed  Google Scholar 

  • Dunn PM, Gever J, Ruan HZ, Burnstock G (2005) Developmental changes in heteromeric P2X(2/3) receptor expression in rat sympathetic ganglion neurons. Dev Dyn 234:505–511

    Article  CAS  PubMed  Google Scholar 

  • Foong JP, Nguyen TV, Furness JB, Bornstein JC, Young HM (2012) Myenteric neurons of the mouse small intestine undergo significant electrophysiological and morphological changes during postnatal development. J Physiol 590(Pt 10):2375–2390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gulbransen BD, Bashashati M, Hirota SA, Gui X, Roberts JA, MacDonald JA, Muruve DA, McKay DM, Beck PL, Mawe GM, Thompson RJ, Sharkey KA (2012) Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat Med 18:600–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo W, Zhang Z, Liu X, Burnstock G, Xiang Z, He C (2013) Developmental expression of P2X5 receptors in the mouse prenatal central and peripheral nervous systems. Purinergic Signal 9:239–248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hausmann R, Bodnar M, Woltersdorf R, Wang H, Fuchs M, Messemer N, Qin Y, Gunther J, Riedel T, Grohmann M, Nieber K, Schmalzing G, Rubini P, Illes P (2012) ATP binding site mutagenesis reveals different subunit stoichiometry of functional P2X2/3 and P2X2/6 receptors. J Biol Chem 287:13930–13943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heine C, Heimrich B, Vogt J, Wegner A, Illes P, Franke H (2006) P2 receptor-stimulation influences axonal outgrowth in the developing hippocampus in vitro. Neuroscience 138:303–311

    Article  CAS  PubMed  Google Scholar 

  • Hodges RR, Vrouvlianis J, Scott R, Dartt DA (2011) Identification of P2X(3) and P2X(7) purinergic receptors activated by ATP in rat lacrimal gland. Invest Ophthalmol Vis Sci 52:3254–3263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu HZ, Gao N, Lin Z, Gao C, Liu S, Ren J, Xia Y, Wood JD (2001) P2X(7) receptors in the enteric nervous system of guinea-pig small intestine. J Comp Neurol 440:299–310

    Article  CAS  PubMed  Google Scholar 

  • Huang LC, Greenwood D, Thorne PR, Housley GD (2005) Developmental regulation of neuron-specific P2X3 receptor expression in the rat cochlea. J Comp Neurol 484:133–143

    Article  CAS  PubMed  Google Scholar 

  • Jiang LH, Kim M, Spelta V, Bo X, Surprenant A, North RA (2003) Subunit arrangement in P2X receptors. J Neurosci 23:8903–8910

    CAS  PubMed  Google Scholar 

  • Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532

    Article  CAS  PubMed  Google Scholar 

  • Lewis C, Neidhart S, Holy C, North RA, Buell G, Surprenant A (1995) Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377:432–435

    Article  CAS  PubMed  Google Scholar 

  • Linan-Rico A, Jaramillo-Polanco J, Espinosa-Luna R, Jimenez-Bremont JF, Linan-Rico L, Montano LM, Barajas-Lopez C (2012) Retention of a new-defined intron changes pharmacology and kinetics of the full-length P2X2 receptor found in myenteric neurons of the guinea pig. Neuropharmacology 63:394–404

    Article  CAS  PubMed  Google Scholar 

  • Linan-Rico A, Wunderlich JE, Grants IS, Frankel WL, Xue J, Williams KC, Harzman AE, Enneking JT, Cooke HJ, Christofi FL (2013) Purinergic autocrine regulation of mechanosensitivity and serotonin release in a human EC model: ATP-gated P2X3 channels in EC are downregulated in ulcerative colitis. Inflamm Bowel Dis 19:2366–2379

    Article  PubMed  Google Scholar 

  • Nieto-Pescador MG, Guerrero-Alba R, Valdez-Morales E, Espinosa-Luna R, Jiménez-Vargas N, Liñan-Rico A, Telma LR-L, Verónica D-H, Luis MM, Barajas-Lopez C (2013) P2X4 subunits are part of P2X native channels in murine myenteric neurons. Eur J Pharmacol 709:93–102

    Article  PubMed  Google Scholar 

  • North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    CAS  PubMed  Google Scholar 

  • Ohta T, Kubota A, Murakami M, Otsuguro K, Ito S (2005) P2X2 receptors are essential for [Ca2+]i increases in response to ATP in cultured rat myenteric neurons. Am J Physiol Gastrointest Liver Physiol 289:G935–G948

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Bian X, DeVries M, Schnegelsberg B, Cockayne DA, Ford AP, Galligan JJ (2003) P2X2 subunits contribute to fast synaptic excitation in myenteric neurons of the mouse small intestine. J Physiol 552:809–821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruan HZ, Burnstock G (2005) The distribution of P2X5 purinergic receptors in the enteric nervous system of mouse. Cell Tissue Res 319:191–200

    Article  CAS  PubMed  Google Scholar 

  • Ruan HZ, Moules E, Burnstock G (2004) Changes in P2X3 purinoceptors in sensory ganglia of the mouse during embryonic and postnatal development. Histochem Cell Biol 122:539–551

    Article  CAS  PubMed  Google Scholar 

  • Slater M, Barden JA, Murphy CR (2000) The purinergic calcium channels P2X1,2,5,7 are down-regulated while P2X3,4,6 are up-regulated during apoptosis in the ageing rat prostate. Histochem J 32:571–580

    Article  CAS  PubMed  Google Scholar 

  • Surprenant A, Buell G, North RA (1995) P2X receptors bring new structure to ligand-gated ion channels. Trends Neurosci 18:224–229

    Article  CAS  PubMed  Google Scholar 

  • Torres GE, Egan TM, Voigt MM (1999) Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners. J Biol Chem 274:6653–6659

    Article  CAS  PubMed  Google Scholar 

  • Valdez-Morales E, Guerrero-Alba R, Linan-Rico A, Espinosa-Luna R, Zarazua-Guzman S, Miranda-Morales M, Montano LM, Barajas-Lopez C (2011) P2X7 receptors contribute to the currents induced by ATP in guinea pig intestinal myenteric neurons. Eur J Pharmacol 668:366–372

    Article  CAS  PubMed  Google Scholar 

  • Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, Buell G (1994) A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP. Nature 371:516–519

    Article  CAS  PubMed  Google Scholar 

  • Van Crombruggen K, Van Nassauw L, Timmermans JP, Lefebvre RA (2007) Inhibitory purinergic P2 receptor characterisation in rat distal colon. Neuropharmacology 53:257–271

    Article  PubMed  Google Scholar 

  • Van Nassauw L, Brouns I, Adriaensen D, Burnstock G, Timmermans JP (2002) Neurochemical identification of enteric neurons expressing P2X(3) receptors in the guinea-pig ileum. Histochem Cell Biol 118:193–203

    PubMed  Google Scholar 

  • Wilkinson WJ, Jiang LH, Surprenant A, North RA (2006) Role of ectodomain lysines in the subunits of the heteromeric P2X2/3 receptor. Mol Pharmacol 70:1159–1163

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Burnstock G (2004a) Development of nerves expressing P2X3 receptors in the myenteric plexus of rat stomach. Histochem Cell Biol 122:111–119

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Burnstock G (2004b) P2X2 and P2X3 purinoceptors in the rat enteric nervous system. Histochem Cell Biol 121:169–179

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Burnstock G (2005) Distribution of P2Y2 receptors in the guinea pig enteric nervous system and its coexistence with P2X2 and P2X3 receptors, neuropeptide Y, nitric oxide synthase and calretinin. Histochem Cell Biol 124:379–390

    Article  CAS  PubMed  Google Scholar 

  • Zeng JW, Cheng SY, Liu XH, Zhao YD, Xiao Z, Burnstock G, Ruan HZ (2013) Expression of P2X5 receptors in the rat, cat, mouse and guinea pig dorsal root ganglion. Histochem Cell Biol 139:549–557

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by CONACYT, México (Project No. 48297). Scholarships of L-VR (33667), VEC (250280), J-VNN (239777), and EHJ (204156), supported by CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Barajas-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loera-Valencia, R., Jiménez-Vargas, N.N., Villalobos, E.C. et al. Expression of P2X3 and P2X5 Myenteric Receptors Varies During the Intestinal Postnatal Development in the Guinea Pig. Cell Mol Neurobiol 34, 727–736 (2014). https://doi.org/10.1007/s10571-014-0055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0055-8

Keywords

Navigation