Skip to main content
Log in

Epidemiological, Clinical, and Molecular Study of a Cohort of Italian Parkinson Disease Patients: Association with Glutathione-S-Transferase and DNA Repair Gene Polymorphisms

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders whose etiology is multifactorial including both hereditary and environmental factors. Currently, pathogenic mutations in at least five genes have been implicated in familial PD generally accounting for less than 10 % of all PD cases in most populations. It has been suggested that polymorphisms in other genes such as those encoding enzymes involved in oxidative metabolism and detoxification could be involved in predisposition to PD since oxidative stress in dopaminergic neurons is thought to be of central importance in the pathogenesis of the disease. The aim of our work was to study the association of genetic polymorphisms in genes involved in oxidative metabolism and detoxification mechanism, namely GSTM1, GSTT1, GSTP1, and those involved in DNA damage repair, OGG1 and XRCC1, in an Italian cohort of sporadic PD patients. We did not detect any association between GSTT1 and GTTM1 null polymorphisms and PD, whereas the 104GSTP1 polymorphism was associated with PD in male patients but not in females. Furthermore, we detected a protective effect of wild type genotype of XRCC1 in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alves G, Forsaa EB, Pedersen KF, Dreetz Gjerstad M, Larsen JP (2008) Epidemiology of Parkinson’s disease. J Neurol 255:18–32

    Article  PubMed  Google Scholar 

  • Baez S, Segura-Aguilar J, Widersten M, Johansson AS, Mannervik B (1997) Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem J 324:25–28

    PubMed  CAS  Google Scholar 

  • Chartier-Harlin MC, Dachsel JC, Vilariño-Güell C, Lincoln SJ, Leprêtre F et al (2011) Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet 89:398–406

    Article  PubMed  CAS  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  PubMed  CAS  Google Scholar 

  • Coppedè F, Ceravoloa R, Migheli F, Fanucchi F, Frosini D, Siciliano G, Bonuccelli U, Migliore L (2010) The hOGG1 Ser326Cys polymorphism is not associated with sporadic Parkinson’s disease. Neurosci Lett 473:248–251

    Article  PubMed  Google Scholar 

  • Cornetta T, Festa F, Testa A, Cozzi R (2006) DNA damage repair and genetic polymorphisms: assessment of individual sensitivity and repair capacity. Int J Radiat Oncol Biol Phys 66:537–545

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Newman B, Dunne MP, Silburn PA, Mellick GD (2004) Case-only study of interactions between genetic polymorphisms of GSTM1, P1, T1 and Z1 and smoking in Parkinson’s disease. Neurosci Lett 366:326–331

    Article  PubMed  CAS  Google Scholar 

  • Dogru-Abassoglu S, Aykac-Toker G, Hanagasi HA, Gurvit H, Emre M, Uysal M (2007) The Arg194Trp polymorphism in DNA repair gene XRCC1 and the risk for sporadic late-onset Alzheimer’s disease. Neurol Sci 28:31–34

    Article  Google Scholar 

  • Evangelou E, Maraganore DM, Ioannidis JPA (2007) Meta-analysis in genome-wide association datasets: strategies and application in Parkinson disease. PLoS ONE 2:c196

    Article  Google Scholar 

  • Fukae J, Takanashi M, Kubo S, Nishioka K, Nakabeppu Y, Mori H et al (2005) Expression of 8-oxoguanine DNA glycosylase (OGG1)in Parkinson’s disease and related neurodegenerative disorders. Acta Neuropathol (Berl) 109:256–262

    Article  CAS  Google Scholar 

  • Gelb D, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson disease. Arch Neurol 56:33–39

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Lewis P, Revesz T, Lees A, Paisan-Ruiz C (2009) The genetics of Parkinson’s syndromes: a critical review. Curr Opin Genet Dev 19:254–265

    Article  PubMed  CAS  Google Scholar 

  • Hoehn M, Yahr M (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    Article  PubMed  CAS  Google Scholar 

  • Houlden H, Singleton AB (2012) The genetics and neuropathology of Parkinson’s disease. Acta Neuropathol 124:325–338

    Article  PubMed  CAS  Google Scholar 

  • Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–36

    Article  PubMed  CAS  Google Scholar 

  • Kelada SN, Stapleton PL, Farin FM, Bammler TK, Eaton DL, Smith-Weller T et al (2003) Glutathione-S-transferase M1, T1, and P1 polymorphisms and Parkinson’s disease. Neurosci Lett 337:5–8

    Article  PubMed  CAS  Google Scholar 

  • Kiyohara C, Miyake Y, Koyanagi M et al (2010) GST polymorphisms, interaction with smoking and pesticide use, and risk for Parkinson’s disease in a Japanese population. Parkinsonism Relat Disord 16:447–452

    Article  PubMed  CAS  Google Scholar 

  • Lill CM et al (2012) Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: the PDGene database. PLoS Genet 8:1–10

    Article  Google Scholar 

  • Martin LJ (2008) DNA damage and repair: relevance to mechanisms of neurodegeneration. J Neuropathol Exp Neurol 67:377–387

    Article  PubMed  CAS  Google Scholar 

  • Migliore L, Petrozzi L, Lucetti C, Gambaccini G, Bernardini S, Scarpato R et al (2002) Oxidative damage and cytogenetic analysis in leukocytes of Parkinson’s disease patients. Neurology 58:1809–1815

    Article  PubMed  CAS  Google Scholar 

  • Nakabeppu Y, Kajitani K, Sakamoto K, Yamaguchi H, Tsuchimoto D (2006) MTH1 an oxidized purine nucleoside triphosphatase, prevents the cytotoxicity and neurotoxicity of oxidized purine nucleotides. DNA Repair (Amst.) 5:761–772

    Article  CAS  Google Scholar 

  • Nakabeppu Y, Tsuchimoto D, Yamaguchi H, Sakumi K (2007) Oxidative damage in nucleic acids and Parkinson’s disease. J Neurosci Res 85:919–934

    Article  PubMed  CAS  Google Scholar 

  • Nishimura M, Kuno S, Kaji R, Yasuno K, Kawakami H (2005) Glutathione-S-transferase-1 and interleukin-1 beta gene polymorphisms in Japanese patients with Parkinson’s disease. Mov Disord 20:901–902

    Article  PubMed  Google Scholar 

  • Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22:123–144

    Article  PubMed  CAS  Google Scholar 

  • Parildar-Karpuzoglu H, Dogru-Abassoglu S, Hanagasi HA, Karadag BH, Gurvit H, Emre M et al (2008) Single nucleotide polymorphisms in base-excision repair genes hOGG1, APE1 and XRCC1 do not alter risk of Alzheimer’s disease. Neurosci Lett 442:287–291

    Article  PubMed  CAS  Google Scholar 

  • Perez-Pastene C, Graumann R, Diaz-Grez F, Miranda M, Venegas P, Godoy OT et al (2007) Association of GSTM1 null polymorphism with Parkinson’s disease in a Chilean population with a strong Amerindian genetic component. Nurosci Lett 418:181–185

    Article  CAS  Google Scholar 

  • Petrozzi L, Lucetti C, Gambaccini G, Bernardini S, Del Dotto P, Migliore L et al (2001) Cytogenetic analysis oxidative damage in lymphocytes of Parkinson’s disease patients. Neurol Sci 22:83–84

    Article  PubMed  CAS  Google Scholar 

  • Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C et al (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41:1303–1307

    Article  PubMed  CAS  Google Scholar 

  • Sherer TB, Betarbet R, Greenamyre JT (2001) Pathogenesis of Parkinson’s disease. Curr Opin Investig Drugs 2:657–662

    PubMed  CAS  Google Scholar 

  • Shinmura K, Yokota J (2001) The OGG1 gene encodes a repair enzyme for oxidatively damaged DNA and is involved in human carcinogenesis. Antioxid Redox Signal 3:597–609

    Article  PubMed  CAS  Google Scholar 

  • Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41:1308–1312

    Article  PubMed  Google Scholar 

  • Singh M, Khan AJ, Shah PP, Shukla R, Khanna VK, Parmar D (2008) Polymorphism in environment responsive genes and association with Parkinson disease. Mol Cell Biochem 312:131–138

    Article  PubMed  CAS  Google Scholar 

  • Tan EK (2007) The role of common genetic risk variants in Parkinson disease. Clin Genet 72:387–393

    Article  PubMed  Google Scholar 

  • Vilariño-Güell C, Wider C, Ross OA, Dachsel JC, Kachergus JM et al (2011) VPS35 mutations in Parkinson disease. Am J Hum Genet 89:162–167

    Article  PubMed  Google Scholar 

  • Wahner AD, Glatt CE, Bronstein JM, Ritz B (2007) Glutathione-S-transferase mu, omega, pi, and theta class variants and smoking in Parkinson’s disease. Neurosci Lett 413:274–278

    Article  PubMed  CAS  Google Scholar 

  • Warner TT, Schapira AH (2003) Genetic and environmental factors in the cause of Parkinson’s disease. Ann Neurol 53:S16–S25

    Article  PubMed  CAS  Google Scholar 

  • Wilson DM, McNeill DR (2007) Base excision repair and the central nervous system. Neuroscience 145:1187–1200

    Article  PubMed  CAS  Google Scholar 

  • Zhong S, Wyllie AH, Barnes D, Wolf CR, Spurr NK (1993) Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis 14:1821–1824

    Article  PubMed  CAS  Google Scholar 

  • Zimprich A, Benet-Pagès A, Struhal W, Graf E, Eck SH et al (2011) A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 89:168–175

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Tamara Ialongo for patient database management and DNA sample extraction. This paper was supported by a Grant (Ricerca Scientifica 2008–2009) from Don Carlo Gnocchi Foundation, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Cozzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornetta, T., Patrono, C., Terrenato, I. et al. Epidemiological, Clinical, and Molecular Study of a Cohort of Italian Parkinson Disease Patients: Association with Glutathione-S-Transferase and DNA Repair Gene Polymorphisms. Cell Mol Neurobiol 33, 673–680 (2013). https://doi.org/10.1007/s10571-013-9933-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-9933-8

Keywords

Navigation