Skip to main content
Log in

Polymorphism in environment responsive genes and association with Parkinson disease

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Attempts were made in the present case-control study to investigate the association of polymorphism in the genes encoding proteins involved in toxication–detoxication and dopaminergic pathways and susceptibility to Parkinson’s disease (PD). Seventy patients suffering from PD and one hundred healthy controls belonging to the same geographical location and same ethnicity were included in the study. PCR-RFLP and allele-specific PCR-based methodology were used to identify the genotypes. Multivariate logistic regression analysis revealed that heterozygous genotypes of cytochrome P4502D6*4(CYP2D6*4), CYP2E1*5B (RsaI) polymorphism and homozygous mutant genotypes of CYP2E1*6 (Dra1) were found to be overrepresented in PD cases when compared to the controls. Risk was also found to be increased in patients carrying glutathione S-transferase T1 (GSTT1) null or homozygous variant genotypes of GSTP1. Significant association was observed for monoamine oxidase-B(MAO-B) variant allele G and PD, whereas no difference in genotype and allele frequencies was observed for manganese-superoxide dismutase (MnSOD), dopamine receptor-D2(DRD2), and dopamine transporter (DAT) genes between controls and PD cases. Genotype combinations characterized by the presence of two variant genotypes on their corresponding loci revealed that four combinations of GSTT1 null and MnSOD(-9Val) or GST null and MAOB-G or CYP2E1*5B and MAO-B-AG or CYP2E1*5B and DRD2 (Taq1A-het) genotypes in the patients exhibited severalfold higher and significant association with risk to PD. Our data suggest that polymorphism in the genes involved in detoxification and dopamine regulation may modulate the susceptibility to PD and could be important risk factors in the pathogenesis of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53:S26–36

    Article  PubMed  CAS  Google Scholar 

  2. Warner TT, Schapira AH (2003) Genetic and environmental factors in the cause of Parkinson’s disease. Ann Neurol 53:S16–S25

    Article  PubMed  CAS  Google Scholar 

  3. Recchia A, Debetto P, Negro A, Guidolin D, Skaper SD, Giusti P (2004) alpha-Synuclein and Parkinson’s disease. FASEB J 18:617–626

    Article  PubMed  CAS  Google Scholar 

  4. Maimone D, Dminici R, Grimaldi LME (2001) Pharmacogenetics of neurodegenerative diseases. Eur J Pharmacol 413:11–29

    Article  PubMed  CAS  Google Scholar 

  5. BenMoyal-Segal L, Soreq H (2006) Gene-environment interactions in sporadic Parkinson’s disease. J Neurochem 97:1740–1755

    Article  PubMed  CAS  Google Scholar 

  6. Wu RM, Cheng CW, Chen KH, Shan DE, Kuo JW, Ho YF et al (2002) Genetic polymorphism of the CYP2E1 gene and susceptibility to Parkinson’s disease in Taiwanese. J Neural Transm 109:1403–1414

    Article  PubMed  CAS  Google Scholar 

  7. Kelada SN, Stapleton PL, Farin FM, Bammler TK, Eaton DL, Smith-Weller T et al (2003) Glutathione-S-transferase M1, T1 and P1 polymorphisms and Parkinson’s disease. Neurosci Lett 337:5–8

    Article  PubMed  CAS  Google Scholar 

  8. Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, Nakagawa-Hattori Y, Shimizu Y, Mizuno Y (1996) Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson’s disease. Biochem Biophys Res Commun 226:561–565, Erratum in: Biochem Biophys Res Commun. 1996 Dec 4 229:361

    Article  PubMed  CAS  Google Scholar 

  9. Gasser T, Wszolek ZK, Trofatter J, Ozelius L, Uitti RJ, Lee CS et al (1994) Genetic linkage studies in autosomal dominant parkinsonism: evaluation of seven candidate genes. Ann Neurol 36:387–396

    Article  PubMed  CAS  Google Scholar 

  10. Toda T, Momose Y, Murata M, Tamiya G, Yamamoto M, Hattori N, Inoko H (2003) Toward identification of susceptibility genes for sporadic Parkinson’s disease. J Neurol 250(Suppl 3):III40–43

    PubMed  Google Scholar 

  11. Schur BC, Bjerke J, Nuwayhid N, Wong SH (2001) Genotyping of cytochrome P450 2D6*3 and *4 mutations using conventional PCR. Clin Chim Acta 308:25–31

    Article  PubMed  CAS  Google Scholar 

  12. Liu S, Park JY, Schantz SP, Stern JC, Lazarus P (2001) Elucidation of CYP2E1 5′ regulatory RsaI/PstI allelic variants and their role in risk for oral cancer. Oral oncol 37:437–445

    Article  PubMed  CAS  Google Scholar 

  13. Vidal F, Lorenzo A, Auguet T, Olona M, Broch M, Gutierrez C et al (2004) Genetic polymorphisms of ADH2, ADH3, CYP4502E1 Dra-I and Pst-I, and ALDH2 in Spanish men: lack of association with alcoholism and alcoholic liver disease. J Hepatol 41:744–750

    Article  PubMed  CAS  Google Scholar 

  14. Harries LW, Stubberns MJ, Forman D, Howard GCW, Wolf CR (1997) Identification of genetic polymorphisms at the glutathione-S-transferase P1 locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 18:641–644

    Article  PubMed  CAS  Google Scholar 

  15. Pemble S, Schroeder KR, Spencer SR, Meyer DJ, Hallier E, Bolt HM, Ketterer B, Taylor JB (1994) Human glutathione s-transferase Theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 300:271–276

    PubMed  CAS  Google Scholar 

  16. Akyol O, Canatan H, Yilmaz HR, Yuce H, Ozyurt H, Sogut S, Gulec M, Elyas H (2004) PCR/RFLP based cost-effective identification of SOD2 signal (leader) sequence polymorphism (Ala-9Val) using NgoM IV: a detailed methodological approach. Clin Chim Acta 345:151–159

    Article  PubMed  CAS  Google Scholar 

  17. Costa P, Checkoway H, Levy D, Smith-Weller T, Franklin GM, Swanson PD, Costa LG (1997) Association of a polymorphism in intron 13 of the monoamine oxidase B gene with Parkinson disease. Am J Med Genet 74:154–156

    Article  PubMed  CAS  Google Scholar 

  18. Spitz MR, Shi H, Yang F, Hudman KS, Jiang H, Chamberlain RM et al (1998) Case-Control Study of the D2 Dopamine Receptor Gene and Smoking Status in Lung Cancer Patients. J Nat Cancer Inst 90:358–363

    Article  PubMed  CAS  Google Scholar 

  19. Lin CN, Liu HC, Tsai SJ, Liu TY, Hong CJ l (2002) Association study of Parkinson’s disease and a dopamine transporter gene polymorphism (1215A/G). Eur Neurol 48:207–209

    Article  PubMed  CAS  Google Scholar 

  20. Bialecka M, Klodowska-Duda G, Honczarenko K, Gawronska-Szklarz B, Opala G, Safrano K, Drozdzik M (2007) Polymorphisms of catechol-0-methyltransferase (COMT), monoamine oxidase B (MAOB), n-acetyltransferase 2 (NAT2) and cytochrome P450 2D6 (CYP2D6) gene in patients with early onset of Parkinson’s disease. Parkinsonism Relat Disord 13(4):224–229

    Article  PubMed  CAS  Google Scholar 

  21. Gołab-Janowska M, Honczarenko K, Gawrońska-Szklarz B, Potemkowski A (2007) CYP2D6 gene polymorphism as a probable risk factor for Alzheimer’s disease and Parkinson’s disease with dementia. Neurol Neurochir Pol 41(2):113–121

    PubMed  Google Scholar 

  22. Elbaz A, Dufouil C, Alperovitch A (2007) Interaction between genes and environment in neurodegenerative diseases. C R Biol 330(4):318–328

    Article  PubMed  CAS  Google Scholar 

  23. Mellick GD (2006) CYP450, genetics and Parkinson’s disease: gene x environment interactions hold the key. J Neural Transm Suppl 70:1–7

    Article  Google Scholar 

  24. Palma GD, Mozzoni P, Mutti A, Calzetti S, Negrotti A (1998) Case-control study of interactions between genetic and environmental factors in Parkinson’s disease. Lancet 352:1986–1987

    Article  PubMed  Google Scholar 

  25. Stroombergen M, Waring RH (1999) Determination of glutathionine S-transferase mu and theta polymorphisms in neurological disease. Hum Exp Toxicol 18:141–145

    Article  PubMed  CAS  Google Scholar 

  26. Rahbar A, Kempkes M, Muller Th, Reich S, Welter FL, Meves S, Przuntek H, Bolt HM, Kuhn W (2000) Glutathione S-tansferase polymorphism in Parkinson’s disease. J Neurol Transm 107:331–334

    Article  CAS  Google Scholar 

  27. Grasbon-Frodl EM, Kosel S, Riess O, Muller U, Mehraein P, Graeber MB (1999) Analysis of mitochondrial targeting sequence and coding region polymorphisms of the manganese superoxide dismutase gene in German Parkinson disease patients. Biochem Biophys Res Commun 225:749–752

    Article  Google Scholar 

  28. Farin FM, Hitosis Y, Hallagan SE, Kushleika J, Woods JS, Janssen PS, Smith-Weller T et al (2001) Genetic polymorphism of superoxide dismutase in Parkinson’s disease. Mov Disord 16:705–707

    Article  PubMed  CAS  Google Scholar 

  29. Garpenstrand H, Ekblom J, Forslund K, Rylander G, Oreland L (2000) Platelet monoamine oxidase activity is related to MAO-B intron 13 genotype. J Neurol Transm 107:523–530

    Article  CAS  Google Scholar 

  30. Tan EK, Tan Y, Chai A, Tan C, Shen H, Lum SY et al (2003) Dopamine D2 receptor Taq 1A and Taq1B polymorphisms in Parkinson’s disease. Mov Disord 18:593–595

    Article  PubMed  Google Scholar 

  31. Kimura M, Matsushita S, Arai H, Takeda A, Higuchi S (2001) No evidence of association between a dopamine transporter gene polymorphism (1215A/G) and Parkinson’s disease. Ann Neurol 49:276–277

    Article  PubMed  CAS  Google Scholar 

  32. Morino H, Kawarai T, Izumi Y, Kazuta T, Oda M, Komure O, Udaka F, Kameyama M, Nakamura S, Kawakami H (2000) A single nucleotide polymorphism of dopamine transporter gene is associated with Parkinson’s disease. Ann Neurol 47:528–531

    Article  PubMed  CAS  Google Scholar 

  33. Bon MAM, Jansen Steur ENH, de Vos RAI, Vermis I (1999) Neurogenetic correlates of Parkinson’s disease: apolipoprotein-E and cytochrome P450 2D6 genetic polymorphism. Neurosci Lett 266:149–151

    Article  PubMed  CAS  Google Scholar 

  34. Dick F, Palma GD, Ahmadi A, Osborne A, Scott NW, Prescott GJ, et al (2007) Gene-environment interactions in parkinsonism and Parkinson’s disease: the Geoparkinson study. Occup Environ Med 64(10):673–680

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Director, Industrial Toxicology Research Centre, Lucknow, for his keen interest and support in carrying out the study. Ms. Madhu Singh is grateful to CSIR, New Delhi, for providing Senior Research Fellowship. The financial support of Indian Council of Medical research (ICMR) in sponsoring a research project for carrying out the above studies is gratefully acknowledged. The technical assistance of Mr. B.S. Pandey and Mr. Rajesh Misra and computer help of Mr. Mohd. Aslam is gratefully acknowledged. ITRC communication No.2602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Parmar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, M., Khan, A.J., Shah, P.P. et al. Polymorphism in environment responsive genes and association with Parkinson disease. Mol Cell Biochem 312, 131–138 (2008). https://doi.org/10.1007/s11010-008-9728-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9728-2

Keywords

Navigation