Skip to main content

Advertisement

Log in

Micronano channel fiber construction and its super nanofluidic ionic conductivity

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanofluids are widely used in seawater desalination, energy conversion, and ion circuits, and the ordered channel structure can improve the ion transport properties of such nanofluids. Biomass-based nanofluids has revealed flaws, such as uncontrollable construction of nanostructure, the weak interaction of structural components, low ionic conductivity, unsatisfactory long-term reliability underwater, and insufficient energy conversion efficiency. Herein, in this study, micronano channel fiber was constructed by self-twisting microfluidic spinning cellulose nanocrystals (CNCs) to obtain aligned nanostructures with an orientation of 0.77. An ordered arrangement and stable bonding formed between the CNCs make their mechanical properties and electrical conductivity improve significantly. It exhibited excellent mechanical properties, with a tensile strength of 450 MPa. The cellulose fibers had a conductivity of 5.5 mS/cm in a 10−5 M KCl solution. The steady-state ordered arrangement micronano channels and regularly arranged hydroxyl functional groups formed by self-twisting effect, which promotes ion transport with higher diffusion coefficient of K+ than Cl. This work can promote the application of pure cellulose in high-performance osmotic energy conversion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham J, Vasu KS, Williams CD, Gopinadhan K, Su Y, Cherian CT, Dix J, Prestat E, Haigh SJ, Grigorieva IV, Carbone P, Geim AK, Nair RR (2017) Tunable sieving of ions using graphene oxide membranes. Nat Nanotechnol 12(6):546–550

    Article  CAS  PubMed  Google Scholar 

  • Anikushin BM, Lagutin PG, Kanbetova AM, Novikov AA, Vinokurov VA (2022) Zeta potential of nanosized particles of cellulose as a function of pH. Chem Technol Fuels Oils 57(6):913–916

    Article  CAS  Google Scholar 

  • Cao L, Si Y, Yin X, Yu J, Ding B (2019) Ultralight and resilient electrospun fiber sponge with a lamellar corrugated microstructure for effective low-frequency sound absorption. ACS Appl Mater Interfaces 11(38):35333–35342

    Article  CAS  PubMed  Google Scholar 

  • Chau M, Sriskandha SE, Pichugin D, Thérien-Aubin H, Nykypanchuk D, Chauve G, Méthot M, Bouchard J, Gang O, Kumacheva E (2015) Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals. Biomacromol 16(8):2455–2462

    Article  CAS  Google Scholar 

  • Chen C, Hu L (2021) Nanoscale ion regulation in wood-based structures and their device applications. Adv Mater 33(28):2002890

    Article  CAS  Google Scholar 

  • Chen G, Li T, Chen C, Wang C, Liu Y, Kong W, Liu D, Jiang B, He S, Kuang Y, Hu L (2019) A highly conductive cationic wood membrane. Adv Func Mater 29(44):1902772

    Article  CAS  Google Scholar 

  • Cheng Q, Li Q, Yuan Z, Li S, Xin JH, Ye D (2021) Bifunctional regenerated cellulose/polyaniline/nanosilver fibers as a catalyst/bactericide for water decontamination. ACS Appl Mater Interfaces 13(3):4410–4418

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Gong H, Wang Y, Li D, Bai H (2018) A thermally insulating textile inspired by polar bear hair. Adv Mater 30(14):1706807

    Article  Google Scholar 

  • Danesh M, Moud A, Mauran D, Hojabr S, Berry R, Pawlik M, Hatzikiriakos S (2021) The yielding of attractive gels of nanocrystal cellulose (CNC). J Rheol 65:855–869

    Article  CAS  Google Scholar 

  • Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 15:2327–2346

    Article  CAS  Google Scholar 

  • Feng J, Graf M, Liu K, Ovchinnikov D, Dumcenco D, Heiranian M, Nandigana V, Aluru NR, Kis A, Radenovic A (2016) Single-layer MoS2 nanopores as nanopower generators. Nature 536(7615):197–200

    Article  CAS  PubMed  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Gao Q, Wang J, Liu J, Wang Y, Guo J, Zhong Z, Liu X (2021) High mechanical performance based on the alignment of cellulose nanocrystal/chitosan composite filaments through continuous coaxial wet spinning. Cellulose 28(12):7995–8008

    Article  CAS  Google Scholar 

  • Gao C, Zhang W, Liu T, Luo B, Cai C, Chi M, Zhang S, Liu Y, Wang J, Zhao J, Qin C, Nie S (2024) Hierarchical porous triboelectric aerogels enabled by heterointerface engineering. Nano Energy 109223:2211–2855

    Google Scholar 

  • Ghanbari H, Esfandiar A (2020) Ion transport through graphene oxide fibers as promising candidate for blue energy harvesting. Carbon 165:267–274

    Article  CAS  Google Scholar 

  • Håkansson KMO, Fall AB, Lundell F, Yu S, Krywka C, Roth SV, Santoro G, Kvick M, PrahlWittberg L, Wågberg L, Söderberg LD (2014) Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun 5(1):4018

    Article  PubMed  Google Scholar 

  • Haywood AD, Davis VA (2017) Effects of liquid crystalline and shear alignment on the optical properties of cellulose nanocrystal films. Cellulose 24:705–716

    Article  CAS  Google Scholar 

  • Hou Y, Hou X (2021) Bioinspired nanofluidic iontronics. Science 373:628–629

  • Ji J, Kang Q, Zhou Y, Feng Y, Chen X, Yuan J, Guo W, Wei Y, Jiang L (2017) Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv Func Mater 27(2):1603623

    Article  Google Scholar 

  • Kan Z, Li ZY, Chen J, Hou YQ, Zhang J, Sun RQ, Bu ZX, Wang LY, Wang M, Chen XY, Hou X (2020) Tannic acid modified single nanopore with multivalent metal ions recognition and ultra-trace level detection. Nano Today 33:100868

    Article  Google Scholar 

  • Kim SJ, Ko SH, Kang KH, Han J (2010) Direct seawater desalination by ion concentration polarization. Nat Nanotechnol 5(4):297–301

    Article  CAS  PubMed  Google Scholar 

  • Koltonow Andrew AR, Huang J (2016) Two-dimensional nanofluidics. Science 351(6280):1395–1396

    Article  CAS  PubMed  Google Scholar 

  • Kong W, Wang C, Jia C, Kuang Y, Pastel G, Chen C, Chen G, He S, Huang H, Zhang J, Wang S, Hu L (2018) Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv Mater 30(39):1801934

    Article  Google Scholar 

  • Kong W, Li T, Chen C, Chen G, Brozena AH, Liu D, Liu Y, Wang C, Gan W, Wang S, He S, Hu L (2019) Strong, water-stable ionic cable from bio-hydrogel. Chem Mater 31(22):9288–9294

    Article  CAS  Google Scholar 

  • Kong W, Chen C, Chen G, Wang C, Liu D, Das S, Chen G, Li T, Li J, Liu Y, Li Z, Clifford BC, Hu L (2021) Wood ionic cable. Small 17(40):2008200

    Article  CAS  Google Scholar 

  • Lam E, Hemraz UD (2021) Preparation and surface functionalization of carboxylated cellulose nanocrystals. Nanomaterials 11:1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalanne-Tisné M, Samuel E, De Winter J, Favrelle-Huret A, Thielemans W, Zinck P (2022) Cellulose nanocrystals modification by grafting from ring opening polymerization of a cyclic carbonate. Carbohydr Polym 295:119840

  • Lao J, Lv R, Gao J, Wang A, Wu J, Luo J (2018) Aqueous stable Ti3C2 MXene membrane with fast and photoswitchable nanofluidic transport. ACS Nano 12(12):12464–12471

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Choi W, Han J-H, Strano M (2010) Coherence resonance in a single-walled carbon nanotube ion channel. Science 329(5997):1320–1324

  • Lenfant G, Heuzey M-C, van de Ven TGM, Carreau PJ (2017) A comparative study of ECNC and CNC suspensions: effect of salt on rheological properties. Rheol Acta 56(1):51–62

    Article  CAS  Google Scholar 

  • Li X, Wang J, Liu Y, Zhao T, Luo B, Liu T, Zhang S, Chi M, Cai C, Wei Z, Zhang P, Nie S (2024) Lightweight and strong cellulosic triboelectric materials enabled by cell wall nanoengineering. Nano Lett 24(10):3273–3281

    Article  CAS  PubMed  Google Scholar 

  • Li T, Li Sylvia X, Kong W, Chen C, Hitz E, Jia C, Dai J, Zhang X, Briber R, Siwy Z, Reed M, Hu L (2019) A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci Adv 5(2):eaau4238

  • Liu X, Wang L, Song X, Song H, Zhao JR, Wang S (2012) A kinetic model for oxidative degradation of bagasse pulp fiber by sodium periodate. Carbohyd Polym 90(1):218–223

    Article  CAS  Google Scholar 

  • Liu M-L, Huang M, Tian L-Y, Zhao L-H, Ding B, Kong D-B, Yang Q-H, Shao J-J (2018) Two-dimensional nanochannel arrays based on flexible montmorillonite membranes. ACS Appl Mater Interfaces 10(51):44915–44923

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Lyu J, Fang D, Zhang X (2019) Nanofibrous kevlar aerogel threads for thermal insulation in harsh environments. ACS Nano 13(5):5703–5711

    Article  CAS  PubMed  Google Scholar 

  • Loschwitz J, Olubiyi O, Hub J, Strodel B, Poojari C (2020) Chapter seven - computer simulations of protein–membrane systems. Prog Mol Biol Transl Sci 170:273–403

  • Mattia D, Gogotsi Y (2008) Review: static and dynamic behavior of liquids inside carbon nanotubes. Microfluid Nanofluid 5(3):289–305

    Article  CAS  Google Scholar 

  • Meng X, Pan H, Lu T, Chen Z, Chen Y, Zhang D, Zhu S (2018) Photonic-structured fibers assembled from cellulose nanocrystals with tunable polarized selective reflection. Nanotechnology 29(32):325604

    Article  PubMed  Google Scholar 

  • Monica B, Bhagat R, Ghanshyam SC, Anupama K (2018) l-Cysteine functionalized bagasse cellulose nanofibers for mercury(II) ions adsorption. Int J Biol Macromol 112:728–736

    Article  Google Scholar 

  • Moud AA, Kamkar M, Sanati-Nezhad A, Hejazi SH (2022) Suspensions and hydrogels of cellulose nanocrystals (CNCs): characterization using microscopy and rheology. Cellulose 29(7):3621–3653

    Article  CAS  Google Scholar 

  • Nie S, Chen C, Zhu C (2023) Advanced biomass materials: progress in the applications for energy, environmental, and emerging fields. Front Chem Sci Eng 17:795–797

    Article  CAS  Google Scholar 

  • Noy A, Park HG, Fornasiero F, Holt JK, Grigoropoulos CP, Bakajin O (2007) Nanofluidics in carbon nanotubes. Nano Today 2(6):22–29

    Article  Google Scholar 

  • Panicker PS, Kim HC, Agumba DO, Muthoka RM, Kim J (2022) Electric field-assisted wet spinning to fabricate strong, tough, and continuous nanocellulose long fibers. Cellulose 29:3499–3511

    Article  CAS  Google Scholar 

  • Qiao Q, Li X, Huang L (2020) Crystalline cellulose under pyrolysis conditions: the structure-property evolution via reactive molecular dynamics simulations. J Chem Eng Data 65(2):360–372

    Article  CAS  Google Scholar 

  • Qin S, Liu D, Wang G, Portehault D, Garvey CJ, Gogotsi Y, Lei W, Chen Y (2017) High and stable ionic conductivity in 2D nanofluidic ion channels between boron nitride layers. J Am Chem Soc 139(18):6314–6320

    Article  CAS  PubMed  Google Scholar 

  • Raidongia K, Huang J (2012) Nanofluidic ion transport through reconstructed layered materials. J Am Chem Soc 134(40):16528–16531

    Article  CAS  PubMed  Google Scholar 

  • Romero V, Vázquez MI, Benavente J (2013) Study of ionic and diffusive transport through a regenerated cellulose nanoporous membrane. J Membr Sci 433:152–159

    Article  CAS  Google Scholar 

  • Sang X, Qin C, Tong Z, Kong S, Jia Z, Wan G, Liu X (2017) Mechanism and kinetics studies of carboxyl group formation on the surface of cellulose fiber in a TEMPO-mediated system. Cellulose 24(6):2415–2425

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Shen H, Sun T, Wu H, Wang L, Zhang H, Zhou J (2023) Effect of draw-ratio on the structure and properties of wet-spun cyanoethyl cellulose fibers. Cellulose 30:5489–5501

    Article  CAS  Google Scholar 

  • Sheng N, Chen S, Zhang M, Wu Z, Liang Q, Ji P, Wang H (2021) TEMPO-oxidized bacterial cellulose nanofibers/graphene oxide fibers for osmotic energy conversion. ACS Appl Mater 13:22416–22425

    Article  CAS  Google Scholar 

  • Shi Z, Zhang W, Zhang F, Liu X, Wang D, Jin J, Jiang L (2013) Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films. Adv Mater 25(17):2422–2427

    Article  CAS  PubMed  Google Scholar 

  • Shkyliuk I, Makowski T, Piorkowska E (2023) Uniaxial orientation of cellulose nanocrystals by zone-casting technique. Cellulose 30:10117–10124

    Article  Google Scholar 

  • Si Y, Zhang, Boussouar I, Li HB (2012) Selective sensing and transport in bionic nanochannel based on macrocyclic host-guest chemistry. Chin Chem Lett 32(2):642–648

  • Siria A, Poncharal P, Biance A-L, Fulcrand R, Blase X, Purcell ST, Bocquet L (2013) Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494(7438):455–458

    Article  CAS  PubMed  Google Scholar 

  • Szilárd P, Abraham MJ, Kutzner C, Hess B, Lindahl E (2014) Tackling exascale software challenges in molecular dynamics simulations with GROMACS. Springer, Cham

    Google Scholar 

  • Tanaka T, Fujita M, Takeuchi A, Suzuki Y, Uesugi K, Ito K, Fujisawa T, Doi Y, Iwata T (2006) Formation of highly ordered structure in Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] high-strength fibers. Macromolecules 39(8):2940–2946

    Article  CAS  Google Scholar 

  • Trache D, Hussin MH, Haafiz MKM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Wang S, Chen G, Kong W, Ping W, Dai J, Pastel G, Xie H, He S, Das S, Hu L (2018) Flexible, bio-compatible nanofluidic ion conductor. Chem Mater 30(21):7707–7713

    Article  CAS  Google Scholar 

  • Wang C, Miao C, Zhu X, Feng X, Hu C, Wei D, Zhu Y, Kan C, Shi D, Chen S (2019a) Fabrication of stable and flexible nanocomposite membranes comprised of cellulose nanofibers and graphene oxide for nanofluidic ion transport. ACS Appl Nano Mater 2(7):4193–4202

    Article  CAS  Google Scholar 

  • Wang M, Meng H, Wang D, Yin Y, Stroeve P, Zhang Y, Sheng Z, Chen B, Zhan K, Hou X (2019b) Dynamic curvature nanochannel-based membrane with anomalous ionic transport behaviors and reversible rectification switch. Adv Mater 31(11):1805130

    Article  Google Scholar 

  • Wang C, Li Y, Yu H-Y, Abdalkarim SYH, Zhou J, Yao J, Zhang L (2021) Continuous meter-scale wet-spinning of cornlike composite fibers for eco-friendly multifunctional electronics. ACS Appl Mater Interfaces 13(34):40953–40963

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Gao Q, Wang Y, Liu X, Nie S (2022) Strong fibrous filaments nanocellulose crystals prepared by self-twisting microfluidic spinning. Ind Crops Prod 178:114599

    Article  CAS  Google Scholar 

  • Wu K, Liu D, Gong F, Lei C, Fu Q (2020a) Addressing the challenge of fabricating a high content regenerated cellulose/nanomaterial composite: the magical effect of urea. Green Chem 22(13):4121–4127

    Article  CAS  Google Scholar 

  • Wu T, Zeng Z, Siqueira G, De France K, Sivaraman D, Schreiner C, Figi R, Zhang Q, Nyström G (2020b) Dual-porous cellulose nanofibril aerogels via modular drying and cross-linking. Nanoscale 12(13):7383–7394

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Lei X, Xue S, Lian R, Xiong G, Xin X, Wang D, Zhang Q (2021) Mechanically strong, thermally stable gas barrier polyimide membranes derived from carbon nanotube-based nanofluids. ACS Appl Mater Interfaces 13(47):56530–56543

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Huang H, Wang X, Cai K, Chen J, Xu Y, Yu F, Nie S, Wang S, Liu X (2024) Anti-moisture, anti-bacterial cellulosic triboelectric materials enabled by hydroxyl coordination effect. Nano Energy 109472:2211–2855

    Google Scholar 

  • Zhou Y, Chen C, Zhang X, Liu D, Xu L, Dai J, Liou S-C, Wang Y, Li C, Xie H, Wu Q, Foster B, Li T, Briber RM, Hu L (2019) Decoupling ionic and electronic pathways in low-dimensional hybrid conductors. J Am Chem Soc 141(44):17830–17837

    Article  CAS  PubMed  Google Scholar 

  • Zhou K, Chen C, Lei M, Gao Q, Nie S, Liu X, Wang S (2020) Reduced graphene oxide-based highly sensitive pressure sensor for wearable electronics via an ordered structure and enhanced interlayer interaction mechanism. RSC Adv 10(4):2150–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Lin Z, Xie Z, Fu X, Yuan Z, Jiao C, Qin X, Ye D (2023) Scalable fabrication of regenerated cellulose nanohybrid membranes integrating opposite charges and aligned nanochannels for continuous osmotic energy harvesting. Nano Energy 115:2211–2855

    Article  Google Scholar 

  • Zou J, Wu S, Chen J, Lei X, Li Q, Yu H, Tang S, Ye D (2019) Highly efficient and environmentally friendly fabrication of robust, programmable, and biocompatible anisotropic, all-cellulose, wrinkle-patterned hydrogels for cell alignment. Adv Mater 31(46):1904762

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (32060328), Guangxi Natural Science Foundation (2018GXNSFAA294074).

Author information

Authors and Affiliations

Authors

Contributions

Xinliang Liu: Conceptualization. Jiabao Wang: Oriented Crystal Cellulose Fiber preparation and Methodology. Junyu Chen: Writing—original draft. Qihua Li: Formal analysis. Dongdong Ye: Investigation. Wei Li: Original draft preparation. Shuangxi Nie: Review and editing. Xinliang Liu: Funding acquisition and supervision. these authors contributed equally to this work.

Corresponding author

Correspondence to Xinliang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, J., Li, Q. et al. Micronano channel fiber construction and its super nanofluidic ionic conductivity. Cellulose (2024). https://doi.org/10.1007/s10570-024-05877-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10570-024-05877-x

Keywords

Navigation