Skip to main content
Log in

Understanding of dielectric properties of cellulose

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The theoretical understanding of structural and optoelectronic properties is well-established for a range of inorganic materials; however, such a robust foundation is, in large part, absent in the case of cellulose. Existing literature reports a wide variance in experimentally observed properties for cellulose phases, which are often in contradiction to each other. Motivated by this, we perform an exhaustive first-principles investigation of the structural and optoelectronic properties of cellulose Iα and Iβ phases. Utilizing exchange–correlation functionals that accurately describe van der Waals interaction and leveraging state-of-the-art density functional theory methods, we strive to present a highly accurate periodic model for the cellulose phases. We integrate the framework of volume-average theory and the potential impact of water sorption to offer insights into the considerable discrepancies seen across different experimental outcomes. Thus, our study provides a reconciliatory perspective, bridging the gap between theoretical calculations and disparate experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Accessible when requested.

References

  • Agarwal UP, Ralph SA, Baez C, Reiner RS, Verrill SP (2017) Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose 24:1971–1984

    Article  CAS  Google Scholar 

  • Baroni S, De Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73(2):515

    Article  CAS  Google Scholar 

  • Berland K, Hyldgaard P (2014) Exchange functional that tests the robustness of the plasmon description of the van der waals density functional. Phys Rev B 89(3):035412

    Article  Google Scholar 

  • Blaha P, Schwarz K, Sorantin P, Trickey S (1990) Full-potential, linearized augmented plane wave programs for crystalline systems. Comput Phys Commun 59(2):399–415

    Article  CAS  Google Scholar 

  • Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953

    Article  Google Scholar 

  • Boström M, Huang D, Yang W, Persson C, Sernelius BE (2014) Lithium atom storage in nanoporous cellulose via surface-induced Li2 breakage. EPL 104(6):63003

    Article  Google Scholar 

  • Boutros S, Hanna A (1978) Dielectric properties of moist cellulose. J Polym Sci Polym Chem Ed 16(1):89–94

    Article  CAS  Google Scholar 

  • Braun MM, Pilon L (2006) Effective optical properties of non-absorbing nanoporous thin films. Thin Solid Films 496(2):505–514

    Article  CAS  Google Scholar 

  • Calderon CE, Plata JJ, Toher C, Oses C, Levy O, Fornari M, Natan A, Mehl MJ, Hart G, Nardelli MB (2015) The aflow standard for high-throughput materials science calculations. Comput Mater Sci 108:233–238

    Article  CAS  Google Scholar 

  • Chen P, Nishiyama Y, Putaux J-L, Mazeau K (2014) Diversity of potential hydrogen bonds in cellulose I revealed by molecular dynamics simulation. Cellulose 21:897–908

    Article  CAS  Google Scholar 

  • Cockayne E, Burton BP (2000) Phonons and static dielectric constant in CaTiO3 from first principles. Phys Rev B 62(6):3735

    Article  CAS  Google Scholar 

  • Crovetto A, Chen R, Ettlinger RB, Cazzaniga AC, Schou J, Persson C, Hansen O (2016) Dielectric function and double absorption onset of monoclinic Cu2SnS3: Origin of experimental features explained by first-principles calculations. Sol Energy Mater Sol Cells 154:121–129

    Article  CAS  Google Scholar 

  • Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der waals density functional for general geometries. Phys Rev Lett 92(24):246401

    Article  CAS  PubMed  Google Scholar 

  • Elbaum M, Schick M (1991) Application of the theory of dispersion forces to the surface melting of ice. Phys Rev Lett 66(13):1713

    Article  CAS  PubMed  Google Scholar 

  • Fiedler J, Boström M, Persson C, Brevik I, Corkery R, Buhmann SY, Parsons DF (2020) Full-spectrum high-resolution modeling of the dielectric function of water. J Phys Chem B 124(15):3103–3113

    Article  CAS  PubMed  Google Scholar 

  • French AD (1978) The crystal structure of native ramie cellulose. Carbohydr Res 61(1):67–80

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    Article  CAS  Google Scholar 

  • Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F (2006) Linear optical properties in the projector-augmented wave methodology. Phys Rev B 73(4):045112

    Article  Google Scholar 

  • Gardiner ES, Sarko A (1985) Packing analysis of carbohydrates and polysaccharides 16. The crystal structures of celluloses IVI and IVII. Can J Chem 63(1):173–180

    Article  CAS  Google Scholar 

  • Gigli L, Veit M, Kotiuga M, Pizzi G, Marzari N, Ceriotti M (2022) Thermodynamics and dielectric response of BaTiO3 by data-driven modeling. NPJ Comp Mater 8(1):209

    Article  CAS  Google Scholar 

  • Gonze X (1997) First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm. Phys Rev B 55(16):10337

    Article  CAS  Google Scholar 

  • Gonze X, Lee C (1997) Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B 55(16):10355

    Article  CAS  Google Scholar 

  • Gonze X, Allan DC, Teter MP (1992) Dielectric tensor, effective charges, and phonons in α-quartz by variational density-functional perturbation theory. Phys Rev Lett 68(24):3603

    Article  CAS  PubMed  Google Scholar 

  • Hamada I (2014) Van der waals density functional made accurate. Phys Rev B 89(12):121103

    Article  Google Scholar 

  • Hou W, Yang L, Mo Y, Yin F, Huang Y, Zheng X (2021) Static dielectric constant and dielectric loss of cellulose insulation: Molecular dynamics simulations. High Voltage 6(6):1051–1060

    Article  Google Scholar 

  • Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G (2013) Commentary: The materials project: a materials genome approach to accelerating materials innovation. APL materials 1(1):011002

    Article  Google Scholar 

  • Jose J, Thomas V, John J, Mathew RM, Salam JA, Jose G, Abraham R (2021) Effect of temperature and frequency on the dielectric properties of cellulose nanofibers from cotton. J Mater Sci Mater Electron 32:21213–21224

    Article  CAS  Google Scholar 

  • Joshi H, Wlazło M, Gopidi HR, Malyi OI (2024) Temperature-induced suppression of structural disproportionation in paramagnetic quantum materials. J Appl Phys 135 (5):053901

  • Kane DE (1955) The relationship between the dielectric constant and water-vapor accessibility of cellulose. J Polym Sci 18(89):405–410

    Article  CAS  Google Scholar 

  • Kirklin S, Saal JE, Meredig B, Thompson A, Doak JW, Aykol M, Rühl S, Wolverton C (2015) The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies. NPJ Comput Mater 1(1):1–15

    Article  Google Scholar 

  • Klimeš J, Bowler DR, Michaelides A (2009) Chemical accuracy for the van der waals density functional. J Condens Matter Phys 22(2):022201

    Article  Google Scholar 

  • Klimeš J, Bowler DR, Michaelides A (2011) Van der waals density functionals applied to solids. Phys Rev B 83(19):195131

    Article  Google Scholar 

  • Kolpak F, Blackwell J (1976) Determination of the structure of cellulose II. Macromolecules 9(2):273–278

    Article  CAS  PubMed  Google Scholar 

  • Kotiuga M, Halilov S, Kozinsky B, Fornari M, Marzari N, Pizzi G (2022) Microscopic picture of paraelectric perovskites from structural prototypes. Phys Rev Res 4(1):L012042

    Article  CAS  Google Scholar 

  • Kresse G, Furthmüller J (1996a) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6(1):15–50

    Article  CAS  Google Scholar 

  • Kresse G, Furthmüller J (1996b) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169

    Article  CAS  Google Scholar 

  • Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558

    Article  CAS  Google Scholar 

  • Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125(22):224106

    Article  PubMed  Google Scholar 

  • Lee K, Murray ÉD, Kong L, Lundqvist BI, Langreth DC (2010) Higher-accuracy van der waals density functional. Phys Rev B 82(8):081101

    Article  Google Scholar 

  • Luca HD, Campbell WB, Maass O (1938) Measurement of the dielectric constant of cellulose. Can J Res 16(8):273–288

    Article  Google Scholar 

  • Malmberg C, Maryott A (1956) Dielectric constant of water from 0° to 100° C. J Res Natl Bur Stand 56(1):1–8

    Article  CAS  Google Scholar 

  • Malyi OI, Boström M, Kulish VV, Thiyam P, Parsons DF, Persson C (2016) Volume dependence of the dielectric properties of amorphous SiO2. Phys Chem Chem Phys 18(10):7483–7489

    Article  CAS  PubMed  Google Scholar 

  • Malyi OI, Sopiha KV, Radchenko I, Wu P, Persson C (2018) Tailoring electronic properties of multilayer phosphorene by siliconization. Phys Chem Chem Phys 20(3):2075–2083

    Article  CAS  PubMed  Google Scholar 

  • Malyi OI, Varignon J, Zunger A (2022) Bulk NdNiO2 is thermodynamically unstable with respect to decomposition while hydrogenation reduces the instability and transforms it from metal to insulator. Phys Rev B 105(1):014106

    Article  CAS  Google Scholar 

  • Mo Y, Yang L, Hou W, Zou T, Huang Y, Zheng X, Liao R (2019) Preparation of cellulose insulating paper of low dielectric constant by OAPS grafting. Cellulose 26:7451–7468

    Article  CAS  Google Scholar 

  • Mo Y, Yang L, Hou W, Zou T, Huang Y, Liao R (2020) Preparation of cellulose insulating paper with low dielectric constant by BTCA esterification crosslinking. Macromol Mater Eng 305(6):2000063

    Article  CAS  Google Scholar 

  • Navid A, Pilon L (2008) Effect of polarization and morphology on the optical properties of absorbing nanoporous thin films. Thin Solid Films 516(12):4159–4167

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromol 9(11):3133–3140

    Article  CAS  Google Scholar 

  • Plermjai K, Boonyarattanakalin K, Mekprasart W, Phoohinkong W, Pavasupree S, Pecharapa W (2019) Optical absorption and FTIR study of cellulose/TiO2 hybrid composites. Chiang Mai J Sci 46(3):618–625

    CAS  Google Scholar 

  • Sabatini R, Gorni T, De Gironcoli S (2013) Nonlocal van der waals density functional made simple and efficient. Phys Rev B 87(4):041108

    Article  Google Scholar 

  • Salmén L, Stevanic JS, Holmqvist C, Yu S (2021) Moisture induced straining of the cellulosic microfibril. Cellulose 28:3347–3357

    Article  Google Scholar 

  • Sarko A, Muggli R (1974) Packing analysis of carbohydrates and polysaccharides III. Valonia cellulose and cellulose II. Macromolecules 7(4):486–494

    Article  CAS  Google Scholar 

  • Sarko A, Southwick J, Hayashi J (1976) Packing analysis of carbohydrates and polysaccharides. 7. Crystal structure of cellulose IIII and its relationship to other cellulose polymorphs. Macromolecules 9(5):857–863

    Article  CAS  Google Scholar 

  • Shulenburger L, Baczewski AD, Zhu Z, Guan J, Tomanek D (2015) The nature of the interlayer interaction in bulk and few-layer phosphorus. Nano Lett 15(12):8170–8175

    Article  CAS  PubMed  Google Scholar 

  • Simao CD, Reparaz JS, Wagner MR, Graczykowski B, Kreuzer M, Ruiz-Blanco YB, García Y, Malho J-M, Goñi AR, Ahopelto J (2015) Optical and mechanical properties of nanofibrillated cellulose: Toward a robust platform for next-generation green technologies. Carbohydr Polym 126:40–46

    Article  CAS  PubMed  Google Scholar 

  • Sriphan S, Pharino U, Charoonsuk T, Pulphol P, Pakawanit P, Khamman O, Vittayakorn W, Vittayakorn N, Maluangnont T (2023) Tailoring charge affinity, dielectric property, and band gap of bacterial cellulose paper by multifunctional Ti2NbO7 nanosheets for improving triboelectric nanogenerator performance. Nano Res 16(2):3168–3179

    Article  CAS  Google Scholar 

  • Srivastava D, Kuklin MS, Ahopelto J, Karttunen AJ (2020) Electronic band structures of pristine and chemically modified cellulose allomorphs. Carbohydr Polym 243:116440

    Article  CAS  PubMed  Google Scholar 

  • Stoops W (1934) The dielectric properties of cellulose. J Am Chem Soc 56(7):1480–1483

    Article  CAS  Google Scholar 

  • Thiyam P, Persson C, Parsons D, Huang D, Buhmann S, Boström M (2015) Trends of CO2 adsorption on cellulose due to van der Waals forces. Colloids Surf a: Physicochem Eng Asp 470:316–321

    Article  CAS  Google Scholar 

  • Autho (2020) Crystals and crystal structures. John Wiley & Sons

  • Vali R, Hosseini S (2004) First-principles study of structural, dynamical, and dielectric properties of a-La2O3. Comput Mater Sci 31(1–2):125–130

    Article  CAS  Google Scholar 

  • Woodcock C, Sarko A (1980) Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal structure of native ramie cellulose. Macromolecules 13(5):1183–1187

    Article  CAS  Google Scholar 

  • Yadav A, Acosta CM, Dalpian GM, Malyi OI (2023) First-principles investigations of 2d materials: challenges and best practices. Matter 6(9):2711–2734

    Article  Google Scholar 

  • Zeng X, Deng L, Yao Y, Sun R, Xu J, Wong C-P (2016) Flexible dielectric papers based on biodegradable cellulose nanofibers and carbon nanotubes for dielectric energy storage. J Mater Chem C 4(25):6037–6044

    Article  CAS  Google Scholar 

  • Zunger A (2018) Inverse design in search of materials with target functionalities. Nat Rev Chem Chem 2(4):0121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Poland’s high-performance computing infrastructure PLGrid (HPC Centers: ACK Cyfronet AGH) for providing computer facilities and support within computational grant no. PLG/2023/016228 and for awarding this project access to the LUMI supercomputer, owned by the EuroHPC Joint Undertaking, hosted by CSC (Finland) and the LUMI consortium through grant no. PLL/2023/4/016319.

Funding

This work is supported by the “ENSEMBLE3-Centre of Excellence for nanophotonics, advanced materials and novel crystal growth-based technologies” project (Grant Agreement No. MAB/2020/14), which is a part of the International Research Agendas programme of the Foundation for Polish Science. It receives co-financing from the European Union under the European Regional Development Fund and the European Union’s Horizon 2020 research and innovation programme, specifically through the Teaming for Excellence initiative (Grant Agreement No. 857543). The research work conducted by M.B. and O.I.M. in 2024 was supported through Project No. 2022/47/P/ST3/01236 co-funded by the National Science Centre and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 945339.

Author information

Authors and Affiliations

Authors

Contributions

AY carried out the main calculations, part of the literature review, and main data analysis. AY prepared the main figures and edited the manuscript. MB supported the investigation and contributed to project development/manuscript editing. OIM designed the idea, wrote the original draft, provided supervision, and conducted verification of the main data analysis.

Corresponding author

Correspondence to Oleksandr I. Malyi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent for publication

Every author has given their approval for the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A., Boström, M. & Malyi, O.I. Understanding of dielectric properties of cellulose. Cellulose 31, 2783–2794 (2024). https://doi.org/10.1007/s10570-024-05754-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-024-05754-7

Keywords

Navigation