Skip to main content

Advertisement

Log in

Recent advances in cellulose supported metal nanoparticles as green and sustainable catalysis for organic synthesis

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Organic reactions generally involve a variety of catalysts and solvents, which may be inflammable, toxic, and/or corrosive. Consequently, most of these reactions highly influence the environment. However, recent science and technology applications shift towards eco-friendly and sustainable resources and processes. Nanocatalysis has recently become an emerging field of science owing to its high reactivity, productivity, and selectivity. Cellulose supported metal nanoparticles (NPs) have been broadly applied in catalysis toward the development of green and sustainable chemical transformation processes. Those catalysts can be easily recycled several times without losing their reactivity. Metal nanoparticles have recently attracted more attention as a result of their distinctive characteristics in comparison to their equivalent bulk metals. Those characteristics include a large surface-to-volume ratio, high porosity, and tunable structural morphology. Controlling the characteristics of nanoparticles particularly with respect to their structural morphology, particle size and dispersibility are essential because those will identify their catalytic activity. Recent developments in controlling dispersibility, particle size, and morphological shape of metal nanoparticles paved the way to optimize the nanoparticle geometry for improved catalytic activity. This review focuses on the fabrication and application of cellulose supported metal nanoparticles as promising catalysts for green modern organic synthesis and aims to present cellulose supported metal nanoparticles as a green, sustainable and renewable alternative to conventional catalysts for future industrial applications. The major groups of noble and transition metal nanoparticles are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Fig. 5
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Fig. 6
Scheme 9
Fig. 7
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Fig. 8
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21

Similar content being viewed by others

References

  • Abd El-Lateef HM, Albokheet WA, Gouda M (2020) Carboxymethyl cellulose/metal (Fe, Cu and Ni) nanocomposites as non-precious inhibitors of C-steel corrosion in HCl solutions: synthesis, characterization, electrochemical and surface morphology studies. Cellulose 27:8039–8057

    Google Scholar 

  • Abdelmoez S, Abd El Azeem RA, Nada AA, Khattab TA (2016) Electrospun PDA-CA nanofibers toward hydrophobic coatings. Z Anorg Allg Chem 642:219–221

    CAS  Google Scholar 

  • Abdelrahman MS, Khattab TA (2019) Development of one-step water-repellent and flame-retardant finishes for cotton. ChemistrySelect 4:3811–3816

    CAS  Google Scholar 

  • Abdelrahman MS, Khattab TA, Aldalbahi A, Hatshan MR, El-Naggar ME (2020) Facile development of microporous cellulose acetate xerogel immobilized with hydrazone probe for real time vapochromic detection of toxic ammonia. J Environ Chem Eng 8:104573

    CAS  Google Scholar 

  • Abou-Yousef H, Saber E, Abdel-Aziz MS, Kamel S (2018) Efficient alternative of antimicrobial nanocomposites based on cellulose acetate/Cu-NPs. Soft Mater 16:141–150

    CAS  Google Scholar 

  • Abou-Zeid RE, Dacrory S, Ali KA, Kamel S (2018) Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution. Int J Biol Macromol 119:207–214

    CAS  PubMed  Google Scholar 

  • Ahmed H, Khattab TA, Mashaly H, El-Halwagy A, Rehan M (2020) Plasma activation toward multi-stimuli responsive cotton fabric via in situ development of polyaniline derivatives and silver nanoparticles. Cellulose 27:2913–2926

    CAS  Google Scholar 

  • Aldalbahi A, El-Naggar M, Khattab T, Abdelrahman M, Rahaman M, Alrehaili A, El-Newehy M (2020) Development of green and sustainable cellulose acetate/graphene oxide nanocomposite films as efficient adsorbents for wastewater treatment. Polymers 12:2501

    CAS  PubMed Central  Google Scholar 

  • Andanson J-M, Bordes E, Devemy J, Leroux F, Padua AAH, Gomes MFC (2014) Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. Green Chem 16:2528–2538

    CAS  Google Scholar 

  • Andermatt MF, Lubell AS (2013) Behavior of concrete deep beams reinforced with internal fiber-reinforced polymer-experimental study. ACI Struct J 110:585

    Google Scholar 

  • Arca HC, Mosquera-Giraldo LI, Bi V, Xu D, Taylor LS, Edgar KJ (2018) Pharmaceutical applications of cellulose ethers and cellulose ether esters. Biomacromol 19:2351–2376

    CAS  Google Scholar 

  • Ashour RM, Abdel-Magied AF, Wu Q, Olsson RT, Forsberg K (2020) Green synthesis of metal-organic framework bacterial cellulose nanocomposites for separation applications. Polymers 12:1104

    CAS  PubMed Central  Google Scholar 

  • Ashraf S, Sher F, Khalid ZM, Mehmood M, Hussain I (2014) Synthesis of cellulose–metal nanoparticle composites: development and comparison of different protocols. Cellulose 21:395–405

    CAS  Google Scholar 

  • Assem Y, Abu-Zeid R, Ali K, Kamel S (2019) Synthesis of acrylate-modified cellulose via raft polymerization and its application as efficient metal ions adsorbent. Egypt J Chem 62:85–96

    Google Scholar 

  • Babu SG, Karvembu R (2013) Copper based nanoparticles-catalyzed organic transformations. Catal Surv Asia 17:156–176

    CAS  Google Scholar 

  • Baran NY, Baran T, Menteş A (2017) Fabrication and application of cellulose Schiff base supported Pd (II) catalyst for fast and simple synthesis of biaryls via Suzuki coupling reaction. Appl Catal A 531:36–44

    Google Scholar 

  • Baran NY, Baran T, Menteş A (2018) Production of novel palladium nanocatalyst stabilized with sustainable chitosan/cellulose composite and its catalytic performance in Suzuki-Miyaura coupling reactions. Carbohyd Polym 181:596–604

    Google Scholar 

  • Baruah D, Saikia UP, Pahari P, Dutta DK, Konwar D (2014) Deprotection of oximes, imines, and azines to the corresponding carbonyls using Cu-nanoparticles on cellulose template as green reusable catalyst. RSC Adv 4:59338–59343

    CAS  Google Scholar 

  • Baruah D, Saikia UP, Pahari P, Konwar D (2015) Cu-nanoparticles on cellulose/H2O–CH3CN/microwave: a green system for the selective oxidation of alcohols to aldehydes. Tetrahedron Lett 56:2543–2547

    CAS  Google Scholar 

  • Bauer I, Knölker H-J (2015) Iron catalysis in organic synthesis. Chem Rev 115:3170–3387

    CAS  PubMed  Google Scholar 

  • Bethke K, Palantöken S, Andrei V, Roß M, Raghuwanshi VS, Kettemann F, Greis K, Ingber TT, Stückrath JB, Valiyaveettil S (2018) Functionalized cellulose for water purification, antimicrobial applications, and sensors. Adv Func Mater 28:1800409

    Google Scholar 

  • Bhatt N, Gupta P, Naithani S (2008) Preparation of cellulose sulfate from α-cellulose isolated from Lantana camara by the direct esterification method. J Appl Polym Sci 108:2895–2901

    CAS  Google Scholar 

  • Bidange J, Fischmeister C, Bruneau C (2016) Ethenolysis: A green catalytic tool to cleave carbon–carbon double bonds. Chem—A Eur J 22:12226–12244

    CAS  Google Scholar 

  • Brodin FW, Gregersen ØW, Syverud K (2014) Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material—a review. Nord Pulp Pap Res J 29:156–166

    CAS  Google Scholar 

  • Cai X, Wang H, Zhang Q, Tong J, Lei Z (2014) Magnetically recyclable core–shell Fe3O4@ chitosan-Schiff base complexes as efficient catalysts for aerobic oxidation of cyclohexene under mild conditions. J Mol Catal A: Chem 383:217–224

    Google Scholar 

  • Campelo JM, Luna D, Luque R, Marinas JM, Romero AA (2009) Sustainable preparation of supported metal nanoparticles and their applications in catalysis. ChemSusChem: Chem Sustain Energy Mater 2:18–45

    CAS  Google Scholar 

  • Carney JR, Dillon BR, Thomas SP (2016) Recent advances of manganese catalysis for organic synthesis. Eur J Org Chem 2016:3912–3929

    CAS  Google Scholar 

  • Carrillo AI, Schmidt LC, Marín ML, Scaiano JC (2014) Mild synthesis of mesoporous silica supported ruthenium nanoparticles as heterogeneous catalysts in oxidative Wittig coupling reactions. Catal Sci Technol 4:435–440

    CAS  Google Scholar 

  • Chauhan P, Yan N (2015) Nanocrystalline cellulose grafted phthalocyanine: a heterogeneous catalyst for selective aerobic oxidation of alcohols and alkyl arenes at room temperature in a green solvent. RSC Adv 5:37517–37520

    CAS  Google Scholar 

  • Chemler SR (2015) Copper catalysis in organic synthesis. Beilstein J Org Chem 11:2252–2253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cirtiu CM, Dunlop-Briere AF, Moores A (2011) Cellulose nanocrystallites as an efficient support for nanoparticles of palladium: application for catalytic hydrogenation and Heck coupling under mild conditions. Green Chem 13:288–291

    CAS  Google Scholar 

  • Costa NJ, Rossi LM (2012) Synthesis of supported metal nanoparticle catalysts using ligand assisted methods. Nanoscale 4:5826–5834

    CAS  PubMed  Google Scholar 

  • Cova TF, Murtinho D, Pais AA, Valente AJ (2018) Combining cellulose and cyclodextrins: fascinating designs for materials and pharmaceutics. Front Chem 6:271

    PubMed  PubMed Central  Google Scholar 

  • Dacrory S, Abou-Yousef H, Abou-Zeid RE, Kamel S, Abdel-Aziz MS, Elbadry M (2018) Preparation and characterization of eco-friendly carboxymethyl cellulose antimicrobial nanocomposite hydrogels. J Renew Mater 6:536–547

    CAS  Google Scholar 

  • Dacrory S, Abou-Yousef H, Kamel S, Turky G (2019) Development of biodegradable semiconducting foam based on micro-fibrillated cellulose/Cu–NPs. Int J Biol Macromol 132:351–359

    CAS  PubMed  Google Scholar 

  • Dahl JA, Maddux BL, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269

    CAS  PubMed  Google Scholar 

  • Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Coll Interface Sci 166:119–135

    CAS  Google Scholar 

  • Daté M, Okumura M, Tsubota S, Haruta M (2004) Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angew Chem 116:2181–2184

    Google Scholar 

  • Dong X-Y, Gao Z-W, Yang K-F, Zhang W-Q, Xu L-W (2015) Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal Sci Technol 5:2554–2574

    CAS  Google Scholar 

  • Dong Y, Wu X, Chen X, Wei Y (2017) N-Methylimidazole functionalized carboxymethycellulose-supported Pd catalyst and its applications in Suzuki cross-coupling reaction. Carbohyd Polym 160:106–114

    CAS  Google Scholar 

  • Du Q, Li Y (2012) Application of an air-and-moisture-stable diphenylphosphinite cellulose-supported nanopalladium catalyst for a Heck reaction. Res Chem Intermed 38:1807–1817

    CAS  Google Scholar 

  • Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohyd Polym 209:130–144

    CAS  Google Scholar 

  • El-Naggar ME, Khattab TA, Abdelrahman MS, Aldalbahi A, Hatshan MR (2021) Development of antimicrobial, UV blocked and photocatalytic self-cleanable cotton fibers decorated with silver nanoparticles using silver carbamate and plasma activation. Cellulose 28:1105–1121

    CAS  Google Scholar 

  • El-Nahrawy AM, Abou Hammad AB, Khattab TA, Haroun A, Kamel S (2020) Development of electrically conductive nanocomposites from cellulose nanowhiskers, polypyrrole and silver nanoparticles assisted with Nickel (III) oxide nanoparticles. React Funct Polym 149:104533

    Google Scholar 

  • El-Sakhawy M, Kamel S, Salama A, Youssef M, Elsaid W, Tohamy H (2017) Amphiphilic cellulose as stabilizer for oil/water emulsion. Egypt J Chem 60:181

    Google Scholar 

  • El-Sakhawy M, Kamel S, Salama A, Tohamy H-AS (2018) Preparation and infrared study of cellulose based amphiphilic materials. J Cellulose Chem Technol 52:193–200

    CAS  Google Scholar 

  • Fischer S, Thümmler K, Volkert B, Hettrich K, Schmidt I, Fischer K (2008) Properties and applications of cellulose acetate. In: Macromolecular symposia, vol 262. Wiley, Hoboken, pp 89–96

    Google Scholar 

  • Flores A, Cots E, Bergès J, Muñiz K (2019) Enantioselective iodine (I/III) catalysis in organic synthesis. Adv Synth Catal 361:2–25

    CAS  Google Scholar 

  • Foresti ML, Vázquez A, Boury B (2017) Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances. Carbohyd Polym 157:447–467

    CAS  Google Scholar 

  • Gericke M, Fardim P, Heinze T (2012) Ionic liquids-Promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502

    PubMed  PubMed Central  Google Scholar 

  • González-Arellano C, Campelo JM, Macquarrie DJ, Marinas JM, Romero AA, Luque R (2008) Efficient microwave oxidation of alcohols using low-loaded supported metallic iron nanoparticles. ChemSusChem: Chem Sustain Energy Mater 1:746–750

    Google Scholar 

  • Gopiraman M, Fujimori K, Zeeshan K, Kim B, Kim I (2013) Structural and mechanical properties of cellulose acetate/graphene hybrid nanofibers: Spectroscopic investigations. Express Polym Lett 7:554–563

    CAS  Google Scholar 

  • Gopiraman M, Bang H, Babu SG, Wei K, Karvembu R, Kim IS (2014) Catalytic N-oxidation of tertiary amines on RuO 2 NPs anchored graphene nanoplatelets. Catal Sci Technol 4:2099–2106

    CAS  Google Scholar 

  • Gopiraman M, Bang H, Yuan G, Yin C, Song K-H, Lee JS, Chung IM, Karvembu R, Kim IS (2015) Noble metal/functionalized cellulose nanofiber composites for catalytic applications. Carbohyd Polym 132:554–564

    CAS  Google Scholar 

  • Gu X, Qi W, Xu X, Sun Z, Zhang L, Liu W, Pan X, Su D (2014) Covalently functionalized carbon nanotube supported Pd nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale 6:6609–6616

    CAS  PubMed  Google Scholar 

  • Guibal E (2005) Heterogeneous catalysis on chitosan-based materials: a review. Prog Polym Sci 30:71–109

    CAS  Google Scholar 

  • Habibi Y, Lucia LA (2012) Polysaccharide building blocks: a sustainable approach to the development of renewable biomaterials. Wiley

    Google Scholar 

  • Haroun AA, Kamel S, Elnahrawy AM, Hamadneh I (2019) Rational design of cellulose/titanium dioxide nanocomposites. KGK-KAUTSCHUK GUMMI KUNSTSTOFFE 72:44–48

    CAS  Google Scholar 

  • Hornig S, Heinze T (2008) Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters. Biomacromol 9:1487–1492

    CAS  Google Scholar 

  • Hu M, Wu W, Jiang H (2019) Palladium-catalyzed oxidation reactions of alkenes with green oxidants. Chemsuschem 12:2911–2935

    CAS  PubMed  Google Scholar 

  • Huang K, Xue L, Hu Y-C, Huang M-Y, Jiang Y-Y (2002) Catalytic behaviors of silica-supported starch–polysulfosiloxane–Pt complexes in asymmetric hydrogenation of 4-methyl-2-pentanone. React Funct Polym 50:199–203

    CAS  Google Scholar 

  • Hübsch E, Ball V, Senger B, Decher G, Voegel J-C, Schaaf P (2004) Controlling the growth regime of polyelectrolyte multilayer films: Changing from exponential to linear growth by adjusting the composition of polyelectrolyte mixtures. Langmuir 20:1980–1985

    Google Scholar 

  • Hudson R, Feng Y, Varma RS, Moores A (2014) Bare magnetic nanoparticles: sustainable synthesis and applications in catalytic organic transformations. Green Chem 16:4493–4505

    CAS  Google Scholar 

  • Ishida T, Watanabe H, Bebeko T, Akita T, Haruta M (2010) Aerobic oxidation of glucose over gold nanoparticles deposited on cellulose. Appl Catal A 377:42–46

    CAS  Google Scholar 

  • Isik M, Sardon H, Mecerreyes D (2014) Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci 15:11922–11940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jedvert K, Heinze T (2017) Cellulose modification and shaping–a review. J Polym Eng 37:845–860

    CAS  Google Scholar 

  • Johnston JH, Nilsson T (2012) Nanogold and nanosilver composites with lignin-containing cellulose fibres. J Mater Sci 47:1103–1112

    CAS  Google Scholar 

  • Joo SH, Park JY, Renzas JR, Butcher DR, Huang W, Somorjai GA (2010) Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation. Nano Lett 10:2709–2713

    CAS  PubMed  Google Scholar 

  • Kamel S (2007) Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polym Lett 1:546–575

    CAS  Google Scholar 

  • Kamel S, Khattab TA (2020) Recent advances in cellulose-based biosensors for medical diagnosis. Biosensors 10:67

    CAS  PubMed Central  Google Scholar 

  • Kamel S, Ali N, Jahangir K, Shah S, El-Gendy A (2008) Pharmaceutical significance of cellulose: a review. Express Polym Lett 2:758–778

    CAS  Google Scholar 

  • Kamide K (2005) Cellulose and cellulose derivatives. Elsevier

    Google Scholar 

  • Kaushik M, Moores A (2016) Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637

    CAS  Google Scholar 

  • Kaushik M, Chen WC, van de Ven TG, Moores A (2014) An improved methodology for imaging cellulose nanocrystals by transmission electron microscopy. Nord Pulp Pap Res J 29:77–84

    CAS  Google Scholar 

  • Keshipour S, Khezerloo M (2017) Gold nanoparticles supported on cellulose aerogel as a new efficient catalyst for epoxidation of styrene. J Iran Chem Soc 14:1107–1112

    CAS  Google Scholar 

  • Khattab TA (2018) Novel solvatochromic and halochromic sulfahydrazone molecular switch. J Mol Struct 1169:96–102

    CAS  Google Scholar 

  • Khattab TA, Mowafi S, El-Sayed H (2019) Development of mechanically durable hydrophobic lanolin/silicone rubber coating on viscose fibers. Cellulose 26:9361–9371

    CAS  Google Scholar 

  • Khattab TA, Fouda MM, Rehan M, Okla MK, Alamri SA, Alaraidh IA, Al-Ghamdi AA, Soufan WH, Abdelsalam EM, Allam AA (2020) Novel halochromic cellulose nanowhiskers from rice straw: Visual detection of urea. Carbohyd Polym 231:115740

    CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    CAS  Google Scholar 

  • Koga H, Tokunaga E, Hidaka M, Umemura Y, Saito T, Isogai A, Kitaoka T (2010) Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers. Chem Commun 46:8567–8569

    CAS  Google Scholar 

  • Kumar H, Christopher LP (2017) Recent trends and developments in dissolving pulp production and application. Cellulose 24:2347–2365

    CAS  Google Scholar 

  • Kumar V, Kothari SH, Banker GS (2001) Compression, compaction, and disintegration properties of low crystallinity celluloses produced using different agitation rates during their regeneration from phosphoric acid solutions. AAPS PharmSciTech 2:22–28

    PubMed Central  Google Scholar 

  • Li Z, Friedrich A, Taubert A (2008) Gold microcrystal synthesis via reduction of HAuCl 4 by cellulose in the ionic liquid 1-butyl-3-methyl imidazolium chloride. J Mater Chem 18:1008–1014

    CAS  Google Scholar 

  • Li M-C, Wu Q, Song K, Qing Y, Wu Y (2015) Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. ACS Appl Mater Interfaces 7:5006–5016

    CAS  PubMed  Google Scholar 

  • Li Y, Xu L, Xu B, Mao Z, Xu H, Zhong Y, Zhang L, Wang B, Sui X (2017) Cellulose sponge supported palladium nanoparticles as recyclable cross-coupling catalysts. ACS Appl Mater Interfaces 9:17155–17162

    CAS  PubMed  Google Scholar 

  • Liu S, Ke D, Zeng J, Zhou J, Peng T, Zhang L (2011) Construction of inorganic nanoparticles by micro-nano-porous structure of cellulose matrix. Cellulose 18:945–956

    CAS  Google Scholar 

  • Liu B, Yu S, Wang Q, Hu W, Jing P, Liu Y, Jia W, Liu Y, Liu L, Zhang J (2013) Hollow mesoporous ceria nanoreactors with enhanced activity and stability for catalytic application. Chem Commun 49:3757–3759

    CAS  Google Scholar 

  • Long L-Y, Weng Y-X, Wang Y-Z (2018) Cellulose aerogels: Synthesis, applications, and prospects. Polymers 10:623

    PubMed Central  Google Scholar 

  • Lu X, Xue Y, Nie G, Wang C (2012) Ultrahigh active pd nanocatalyst supported on core-sheath conducting polymer/metal oxide composite nanorods. Catal Lett 142:566–572

    CAS  Google Scholar 

  • Lu B, Xu A, Wang J (2014) Cation does matter: How cationic structure affects the dissolution of cellulose in ionic liquids. Green Chem 16:1326–1335

    CAS  Google Scholar 

  • Mahmoud KA, Male KB, Hrapovic S, Luong JH (2009) Cellulose nanocrystal/gold nanoparticle composite as a matrix for enzyme immobilization. ACS Appl Mater Interfaces 1:1383–1386

    CAS  PubMed  Google Scholar 

  • Mahrdt E, Pinkl S, Schmidberger C, van Herwijnen HW, Veigel S, Gindl-Altmutter W (2016) Effect of addition of microfibrillated cellulose to urea-formaldehyde on selected adhesive characteristics and distribution in particle board. Cellulose 23:571–580

    CAS  Google Scholar 

  • Maiti G, Kayal U, Karmakar R, Bhattacharya RN (2012) Terminal alkynes as keto-methyl equivalent toward one pot synthesis of 1, 5-benzodiazepine derivatives under catalysis of Hg (OTf) 2. Tetrahedron Lett 53:1460–1463

    CAS  Google Scholar 

  • Maleki A, Kamalzare M (2014) Fe3O4@ cellulose composite nanocatalyst: preparation, characterization and application in the synthesis of benzodiazepines. Catal Commun 53:67–71

    CAS  Google Scholar 

  • Maleki A, Movahed H, Paydar R (2016) Design and development of a novel cellulose/γ-Fe 2 O 3/Ag nanocomposite: a potential green catalyst and antibacterial agent. RSC Adv 6:13657–13665

    CAS  Google Scholar 

  • Maleki A, Movahed H, Ravaghi P (2017a) Magnetic cellulose/Ag as a novel eco-friendly nanobiocomposite to catalyze synthesis of chromene-linked nicotinonitriles. Carbohyd Polym 156:259–267

    CAS  Google Scholar 

  • Maleki A, Zand P, Mohseni Z (2017b) Green nanospheres natural camphor coated ferrite as a highly efficient nanocatalyst for the synthesis of dihydropyrimidine derivatives. ChemistrySelect 2:2740–2744

    Google Scholar 

  • Maleki A, Ravaghi P, Movahed H (2018) Green approach for the synthesis of carboxycoumarins by using a highly active magnetically recyclable nanobiocomposite via sustainable catalysis. Micro Nano Lett 13:591–594

    CAS  Google Scholar 

  • Maleki A, Eskandarpour V, Rahimi J, Hamidi N (2019) Cellulose matrix embedded copper decorated magnetic bionanocomposite as a green catalyst in the synthesis of dihydropyridines and polyhydroquinolines. Carbohyd Polym 208:251–260

    CAS  Google Scholar 

  • Martins NC, Freire CS, Pinto RJ, Fernandes SC, Neto CP, Silvestre AJ, Causio J, Baldi G, Sadocco P, Trindade T (2012) Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 19:1425–1436

    CAS  Google Scholar 

  • Mary G, Bajpai S, Chand N (2009) Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Polym Sci 113:757–766

    CAS  Google Scholar 

  • Maslamani N, Khan SB, Danish EY, Bakhsh EM, Zakeeruddin SM, Asiri AM (2021) Carboxymethyl cellulose nanocomposite beads as super-efficient catalyst for the reduction of organic and inorganic pollutants. Int J Biol Macromol 167:101–116

    CAS  PubMed  Google Scholar 

  • Moon RJ, Schueneman GT, Simonsen J (2016) Overview of cellulose nanomaterials, their capabilities and applications. J Miner Met Mater Soc 68:2383–2394. https://doi.org/10.1007/s11837-016-2018-7

    Article  CAS  Google Scholar 

  • Morère J, Tenorio M, Torralvo M, Pando C, Renuncio J, Cabanas A (2011) Deposition of Pd into mesoporous silica SBA-15 using supercritical carbon dioxide. J Supercrit Fluids 56:213–222

    Google Scholar 

  • Ngo YH, Li D, Simon GP, Garnier G (2011) Paper surfaces functionalized by nanoparticles. Adv Coll Interface Sci 163:23–38

    CAS  Google Scholar 

  • Nunes RCR (2017) Rubber nanocomposites with nanocellulose. In: Maria HJ, Thomas S (eds) Progress in rubber nanocomposites. Elsevier, Amsterdam, pp 463–494

    Google Scholar 

  • Omrani AA, Taghavinia N (2012) Photo-induced growth of silver nanoparticles using UV sensitivity of cellulose fibers. Appl Surf Sci 258:2373–2377

    CAS  Google Scholar 

  • Oyewo OA, Elemike EE, Onwudiwe DC, Onyango MS (2020) Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. Int J Biol Macromol 164:2477–2496

    CAS  PubMed  Google Scholar 

  • Padalkar S, Capadona JR, Rowan SJ, Weder C, Won Y-H, Stanciu LA, Moon RJ (2010) Natural biopolymers: novel templates for the synthesis of nanostructures. Langmuir 26:8497–8502

    CAS  PubMed  Google Scholar 

  • Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, de Souza CF, Martin AA, da Silva R, de Freitas RA (2017) Bacterial cellulose in biomedical applications: a review. Int J Biol Macromol 104:97–106

    CAS  PubMed  Google Scholar 

  • Pinto RJ, Marques PA, Martins MA, Neto CP, Trindade T (2007) Electrostatic assembly and growth of gold nanoparticles in cellulosic fibres. J Colloid Interface Sci 312:506–512

    CAS  PubMed  Google Scholar 

  • Pinto RJ, Marques PA, Neto CP, Trindade T, Daina S, Sadocco P (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 5:2279–2289

    CAS  PubMed  Google Scholar 

  • Pinto RJ, Neves MC, Neto CP, Trindade T (2012) Composites of cellulose and metal nanoparticles. In: Ebrahimi F (ed) Nanocomposites–New trends and developments. pp 73–96

  • Qian J, Liu Y, Cui J, Xu Z (2012) Gold (I)-catalyzed synthesis of 1, 5-benzodiazepines directly from o-phenylenediamines and alkynes. J Org Chem 77:4484–4490

    CAS  PubMed  Google Scholar 

  • Rad-Moghadam K, Dehghan N (2014) Application of cellulose/chitosan grafted nano-magnetites as efficient and recyclable catalysts for selective synthesis of 3-indolylindolin-2-ones. J Mol Catal A: Chem 392:97–104

    CAS  Google Scholar 

  • Rahman N, Nongkhlaw R (2018) Recent advances in organo-nanocatalysis in the field of green organic synthesis. Org Chem vi:272–313. https://doi.org/https://doi.org/10.24820/ark.5550190.p010.720

  • Rehan M, Ahmed-Farid OA, Ibrahim SR, Hassan AA, Abdelrazek AM, Khafaga NIM, Khattab TA (2019) Green and sustainable encapsulation of Guava leaf extracts (Psidium guajava L.) into alginate/starch microcapsules for multifunctional finish over cotton gauze. ACS Sustain Chem Eng 7:18612–18623

    CAS  Google Scholar 

  • Rezayat M, Blundell RK, Camp JE, Walsh DA, Thielemans W (2014) Green one-step synthesis of catalytically active palladium nanoparticles supported on cellulose nanocrystals. ACS Sustain Chem Eng 2:1241–1250

    CAS  Google Scholar 

  • Sabaqian S, Nemati F, Nahzomi HT, Heravi MM (2017) Palladium acetate supported on amidoxime-functionalized magnetic cellulose: synthesis, DFT study and application in Suzuki reaction. Carbohyd Polym 177:165–177

    CAS  Google Scholar 

  • Serpa A, Velásquez-Cock J, Gañán P, Castro C, Vélez L, Zuluaga R (2016) Vegetable nanocellulose in food science: A review. Food Hydrocolloids 57:178–186

    Google Scholar 

  • Shaabani A, Nosrati H, Seyyedhamzeh M (2015) Cellulose@ Fe 2 O 3 nanoparticle composites: magnetically recyclable nanocatalyst for the synthesis of 3-aminoimidazo [1, 2-a] pyridines. Res Chem Intermed 41:3719–3727

    CAS  Google Scholar 

  • Sheldon RA (2019) The greening of solvents: Towards sustainable organic synthesis. Curr Opin Green Sustainble Chem 18:13–19

    Google Scholar 

  • Shirini F, Abedini M (2013) Application of nanocatalysts in multi-component reactions. J Nanosci Nanotechnol 13:4838–4860

    CAS  PubMed  Google Scholar 

  • Tang J, Shi Z, Berry RM, Tam KC (2015) Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin. Ind Eng Chem Res 54:3299–3308

    CAS  Google Scholar 

  • Turky G, Moussa MA, Hasanin M, El-Sayed NS, Kamel S (2021) Carboxymethyl cellulose-based hydrogel: dielectric study, antimicrobial activity and biocompatibility. Arab J Sci Eng 46:17–30

    Google Scholar 

  • van de Ven T, Godbout L (2013) Cellulose-medical, pharmaceutical and electronic applications. Chapter 6:105–124

    Google Scholar 

  • Van Rie J, Thielemans W (2017) Cellulose–gold nanoparticle hybrid materials. Nanoscale 9:8525–8554

    PubMed  Google Scholar 

  • Varzi Z, Maleki A (2019) Design and preparation of ZnS-ZnFe2O4: a green and efficient hybrid nanocatalyst for the multicomponent synthesis of 2, 4, 5-triaryl-1H-imidazoles. Appl Organomet Chem 33:e5008

    Google Scholar 

  • Vekariya RL (2017) A review of ionic liquids: Applications towards catalytic organic transformations. J Mol Liq 227:44–60

    CAS  Google Scholar 

  • Vicente AT, Araújo A, Mendes MJ, Nunes D, Oliveira MJ, Sanchez-Sobrado O, Ferreira MP, Águas H, Fortunato E, Martins R (2018) Multifunctional cellulose-paper for light harvesting and smart sensing applications. J Mater Chem C 6:3143–3181

    Google Scholar 

  • Vijayasankar A, Deepa S, Venugopal B, Nagaraju N (2010) Amorphous mesoporous iron aluminophosphate catalyst for the synthesis of 1, 5-benzodiazepines. Chin J Catal 31:1321–1327

    CAS  Google Scholar 

  • Wang X, Hu P, Xue F, Wei Y (2014) Cellulose-supported N-heterocyclic carbene-palladium catalyst: synthesis and its applications in the Suzuki cross-coupling reaction. Carbohyd Polym 114:476–483

    CAS  Google Scholar 

  • Wei W-L, Zhu H-Y, Zhao C-L, Huang M-Y, Jiang Y-Y (2004) Asymmetric hydrogenation of furfuryl alcohol catalyzed by a biopolymer–metal complex, silica-supported alginic acid–amino acid–Pt complex. React Funct Polym 59:33–39

    CAS  Google Scholar 

  • Wohlleben W, Brill S, Meier MW, Mertler M, Cox G, Hirth S, von Vacano B, Strauss V, Treumann S, Wiench K (2011) On the lifecycle of nanocomposites: comparing released fragments and their in-vivo hazards from three release mechanisms and four nanocomposites. Small 7:2384–2395

    CAS  PubMed  Google Scholar 

  • Wolfe JP, Li JJ (2007) An introduction to palladium catalysis. In: Claridge TDW (eds) Tetrahedron organic chemistry series. Elsevier, Amsterdam, vol 26, pp 1–35

  • Wu M, Kuga S, Huang Y (2008) Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils. Langmuir 24:10494–10497

    CAS  PubMed  Google Scholar 

  • Wu X, Lu C, Zhang W, Yuan G, Xiong R, Zhang X (2013) A novel reagentless approach for synthesizing cellulose nanocrystal-supported palladium nanoparticles with enhanced catalytic performance. J Mater Chem A 1:8645–8652

    CAS  Google Scholar 

  • Wu X, Lu C, Zhou Z, Yuan G, Xiong R, Zhang X (2014) Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance. Environ Sci Nano 1:71–79

    CAS  Google Scholar 

  • Wu X, Shi Z, Fu S, Chen J, Berry RM, Tam KC (2016) Strategy for synthesizing porous cellulose nanocrystal supported metal nanocatalysts. ACS Sustain Chem Eng 4:5929–5935

    CAS  Google Scholar 

  • Yadav Y, Guha A, Pandey A, Pal M, Trivedi S, Pandey S (2018) Densities and dynamic viscosities of ionic liquids having 1-butyl-3-methylimidazolium cation with different anions and bis(trifluoromethylsulfonyl)imide anion with different cations in the temperature range (283.15 to 363.15) K. J Chem Thermodyn 116:67–75

    CAS  Google Scholar 

  • Yan W, Chen C, Wang L, Zhang D, Li A-J, Yao Z, Shi L-Y (2016) Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic activity. Carbohyd Polym 140:66–73

    CAS  Google Scholar 

  • Zahedifar M, Shirani M, Akbari A, Seyedi N (2019) Green synthesis of Ag2S nanoparticles on cellulose/Fe3O4 nanocomposite template for catalytic degradation of organic dyes. Cellulose 26:6797–6812

    CAS  Google Scholar 

  • Zahedifar M, Pouramiri B, Razavi R (2020) Triethanolamine lactate-supported nanomagnetic cellulose: a green and efficient catalyst for the synthesis of pyrazolo [3, 4-b] quinolines and theoretical study. Res Chem Intermed 46:2749–2765

    CAS  Google Scholar 

  • Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Biores Technol 100:2580–2587

    CAS  Google Scholar 

  • Zhang Z, Xiao F, Xi J, Sun T, Xiao S, Wang H, Wang S, Liu Y (2014) Encapsulating Pd nanoparticles in double-shelled graphene@ carbon hollow spheres for excellent chemical catalytic property. Sci Rep 4:4053

    PubMed  PubMed Central  Google Scholar 

  • Zhou P, Wang H, Yang J, Tang J, Sun D, Tang W (2012) Bacteria cellulose nanofibers supported palladium (0) nanocomposite and its catalysis evaluation in Heck reaction. Ind Eng Chem Res 51:5743–5748

    CAS  Google Scholar 

  • Zhou Z, Lu C, Wu X, Zhang X (2013) Cellulose nanocrystals as a novel support for CuO nanoparticles catalysts: facile synthesis and their application to 4-nitrophenol reduction. RSC Adv 3:26066–26073

    CAS  Google Scholar 

  • Zhu H, Fang Z, Preston C, Li Y, Hu L (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7:269–287

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Research Centre, for the financial support of this research activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tawfik A. Khattab.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamel, S., Khattab, T.A. Recent advances in cellulose supported metal nanoparticles as green and sustainable catalysis for organic synthesis. Cellulose 28, 4545–4574 (2021). https://doi.org/10.1007/s10570-021-03839-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-03839-1

Keywords

Navigation