Abraham MJ, Murtola T, Schulz R, Pall S, Smith JC, Hess B, Lindahl E (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25
Google Scholar
Agger JW, Isaksen T, Varnai A, Vidal-Melgosa S, Willats WG, Ludwig R, Horn SJ, Eijsink VG, Westereng B (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci USA 111(17):6287–6292
CAS
PubMed
PubMed Central
Google Scholar
Arai K, Shikata T (2019) Molecular motions, structure and hydration behaviour of glucose oligomers in aqueous solution. Phys Chem Chem Phys 21(45):25,379–25,388
CAS
Google Scholar
Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285
CAS
PubMed
Google Scholar
Batys P, Kivisto S, Lalwani SM, Lutkenhaus JL, Sammalkorpi M (2019) Comparing water-mediated hydrogen-bonding in different polyelectrolyte complexes. Soft Matter 15(39):7823–7831
CAS
PubMed
Google Scholar
Batys P, Zhang YP, Lutkenhaus JL, Sammalkorpi M (2018) Hydration and temperature response of water mobility in poly(diallyldimethylammonium)-poly(sodium 4-styrenesulfonate) complexes. Macromolecules 51(20):8268–8277
CAS
PubMed
PubMed Central
Google Scholar
Beeson WT, Phillips CM, Cate JH, Marletta MA (2012) Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 134(2):890–892
CAS
PubMed
Google Scholar
Bellesia G, Chundawat SP, Langan P, Redondo A, Dale BE, Gnanakaran S (2012) Coarse-grained model for the interconversion between native and liquid ammonia-treated crystalline cellulose. J Phys Chem B 116(28):8031–8037
CAS
PubMed
Google Scholar
Bennati-Granier C, Garajova S, Champion C, Grisel S, Haon M, Zhou S, Fanuel M, Ropartz D, Rogniaux H, Gimbert I, Record E, Berrin JG (2015) Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina. Biotechnol Biofuels 8:90
PubMed
PubMed Central
Google Scholar
Bergenstrahle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Ibeta cellulose: a molecular dynamics study. J Phys Chem B 111(30):9138–9145
PubMed
Google Scholar
Bergenstrahle M, Thormann E, Nordgren N, Berglund LA (2009) Force pulling of single cellulose chains at the crystalline cellulose-liquid interface: a molecular dynamics study. Langmuir 25(8):4635–4642
CAS
PubMed
Google Scholar
Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15(3–4):583–620
CAS
PubMed
Google Scholar
Biely P, Singh S, Puchart V (2016) Towards enzymatic breakdown of complex plant xylan structures: state of the art. Biotechnol Adv 34(7):1260–1274
CAS
PubMed
Google Scholar
Biermann O, Hadicke E, Koltzenburg S, Muller-Plathe F (2001) Hydrophilicity and lipophilicity of cellulose crystal surfaces. Angew Chem Int Ed Engl 40(20):3822–3825
CAS
PubMed
Google Scholar
Busk PK, Lange L (2015) Classification of fungal and bacterial lytic polysaccharide monooxygenases. BMC Genom 16:368
Google Scholar
Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014,101
Google Scholar
Calero C, Martí J, Guàrdia E (2015) 1h nuclear spin relaxation of liquid water from molecular dynamics simulations. J Phys Chem B 119(5):1966–1973
CAS
PubMed
Google Scholar
Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147(1):13–21
CAS
Google Scholar
Chundawat SP, Bellesia G, Uppugundla N, da Costa Sousa L, Gao D, Cheh AM, Agarwal UP, Bianchetti CM, Phillips GN, Langan P, Balan V, Gnanakaran S, Dale BE (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133(29):11,163–11,174
CAS
Google Scholar
Cooke SA, Jónsdóttir SO, Westh P (2002) A thermodynamic study of glucose and related oligomers in aqueous solution: Vapor pressures and enthalpies of mixing. J Chem Eng Data 47(5):1185–1192
CAS
Google Scholar
Couturier M, Ladeveze S, Sulzenbacher G, Ciano L, Fanuel M, Moreau C, Villares A, Cathala B, Chaspoul F, Frandsen KE, Labourel A, Herpoel-Gimbert I, Grisel S, Haon M, Lenfant N, Rogniaux H, Ropartz D, Davies GJ, Rosso MN, Walton PH, Henrissat B, Berrin JG (2018) Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat Chem Biol 14(3):306–310
CAS
PubMed
Google Scholar
Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Chem Phys 98(12):10,089–10,092
CAS
Google Scholar
Eichhorn S, Davies G (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13(3):291–307
CAS
Google Scholar
Felby C, Thygesen LG, Kristensen JB, Jørgensen H, Elder T (2008) Cellulose-water interactions during enzymatic hydrolysis as studied by time domain nmr. Cellulose 15:703–710
CAS
Google Scholar
Forsberg Z, Mackenzie AK, Sorlie M, Rohr AK, Helland R, Arvai AS, Vaaje-Kolstad G, Eijsink VG (2014) Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci USA 111(23):8446–8451
CAS
PubMed
PubMed Central
Google Scholar
Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunaes AC, Stenstrom Y, MacKenzie A, Sorlie M, Horn SJ, Eijsink VG (2011) Cleavage of cellulose by a CBM33 protein. Protein Sci 20(9):1479–1483
CAS
PubMed
PubMed Central
Google Scholar
Frandsen KE, Simmons TJ, Dupree P, Poulsen JC, Hemsworth GR, Ciano L, Johnston EM, Tovborg M, Johansen KS, von Freiesleben P, Marmuse L, Fort S, Cottaz S, Driguez H, Henrissat B, Lenfant N, Tuna F, Baldansuren A, Davies GJ, Lo Leggio L, Walton PH (2016) The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases. Nat Chem Biol 12(4):298–303
CAS
PubMed
PubMed Central
Google Scholar
Frommhagen M, Sforza S, Westphal AH, Visser J, Hinz SW, Koetsier MJ, van Berkel WJ, Gruppen H, Kabel MA (2015) Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase. Biotechnol Biofuels 8:101
PubMed
PubMed Central
Google Scholar
Gomes TC, Skaf MS (2012) Cellulose-builder: a toolkit for building crystalline structures of cellulose. J Comput Chem 33(14):1338–1346
CAS
PubMed
Google Scholar
Guvench O, Mallajosyula SS, Raman EP, Hatcher E, Vanommeslaeghe K, Foster TJ, Jamison FW, Mackerell AD (2011) CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J Chem Theor Comput 7(10):3162–3180
CAS
Google Scholar
Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49(15):3305–3316
CAS
PubMed
Google Scholar
Hayashi N, Kondo T, Ishihara M (2005) Enzymatically produced nano-ordered short elements containing cellulose I\(\beta\) crystalline domains. Carbohydr Polym 61(2):191–197
CAS
Google Scholar
Heiner AP, Teleman O (1997) Interface between monoclinic crystalline cellulose and water: breakdown of the odd/even duplicity. Langmuir 13(3):511–518
CAS
Google Scholar
Heiner AP, Kuutti L, Teleman O (1998) Comparison of the interface between water and four surfaces of native crystalline cellulose by molecular dynamics simulations. Carbohydr Res 306(1):205–220
CAS
Google Scholar
Henriksson M, Henriksson G, Berglund L, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8):3434–3441
CAS
Google Scholar
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) Lincs: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472
CAS
Google Scholar
Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807
CAS
PubMed
Google Scholar
Hofstetter K, Hinterstoisser B, Salmen L (2006) Moisture uptake in native cellulose the roles of different hydrogen bonds: a dynamic FT-IR study using deuterium exchange. Cellulose 13:131–145
CAS
Google Scholar
Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5(1):45
CAS
PubMed
PubMed Central
Google Scholar
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38
CAS
PubMed
Google Scholar
Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D, Kittl R, Ludwig R, Haltrich D, Eijsink VG, Horn SJ (2014) A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem 289(5):2632–2642
CAS
PubMed
Google Scholar
Isogai A (2018) Development of completely dispersed cellulose nanofibers. Proc Jpn Acad Ser B Phys Biol Sci 94(4):161–179
CAS
PubMed
PubMed Central
Google Scholar
Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85
CAS
PubMed
Google Scholar
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935
CAS
Google Scholar
Jüergensen J, Ilmberger N, Streit WR (2012) Screening for cellulases with industrial value and their use in biomass conversion. Methods Mol Biol 834:1–16
PubMed
Google Scholar
Khalil HA, Bhat A, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979
Google Scholar
Kontturi E, Tammelin T, Österberg M (2006) Cellulose-model films and the fundamental approach. Chem Soc Rev 35:1287–1304
CAS
PubMed
Google Scholar
Kubicki J, Watts H, Zhao Z, Zhong L (2013) Quantum mechanical calculations on cellulose-water interactions: structures, energetics, vibrational frequencies and NMR chemical shifts for surfaces of I\(\alpha\) and I\(\beta\) cellulose. Cellulose 21:909–926.
CAS
Article
Google Scholar
Kumar S, Gupta R, Lee YY, Gupta RB (2010) Cellulose pretreatment in subcritical water: effect of temperature on molecular structure and enzymatic reactivity. Bioresour Technol 101(4):1337–1347
CAS
PubMed
Google Scholar
Langan P, Sukumar N, Nishiyama Y, Chanzy H (2005) Synchrotron X-ray structures of cellulose I\(\beta\) and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12(6):551–562
CAS
Google Scholar
Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77(19):7007–7015
CAS
PubMed
PubMed Central
Google Scholar
Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302(1):19–25
CAS
Google Scholar
Li Y, Lin M, Davenport JW (2011) Ab initio studies of cellulose i: crystal structure, intermolecular forces, and interactions with water. J Phys Chem C 115(23):11,533–11,539
CAS
Google Scholar
Li YJ, Lu YY, Zhang ZJ, Mei S, Tan TW, Fan LH (2017) Co-fermentation of cellulose and sucrose/xylose by engineered yeasts for bioethanol production. Energy Fuels 31(4):4061–4067
CAS
Google Scholar
Li Y, Wang J, Liu X, Zhang S (2018) Towards a molecular understanding of cellulose dissolution in ionic liquids: anion/cation effect, synergistic mechanism and physicochemical aspects. Chem Sci 9(17):4027–4043
CAS
PubMed
PubMed Central
Google Scholar
Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156(1):76–81
CAS
Google Scholar
Liu B, Krishnaswamyreddy S, Muraleedharan MN, Olson A, Broberg A, Stahlberg J, Sandgren M (2018) Side-by-side biochemical comparison of two lytic polysaccharide monooxygenases from the white-rot fungus Heterobasidion irregulare on their activity against crystalline cellulose and glucomannan. PLoS ONE 13(9):e0203,430
Google Scholar
Lo Leggio L, Simmons TJ, Poulsen JC, Frandsen KE, Hemsworth GR, Stringer MA, von Freiesleben P, Tovborg M, Johansen KS, De Maria L, Harris PV, Soong CL, Dupree P, Tryfona T, Lenfant N, Henrissat B, Davies GJ, Walton PH (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 6:5961
CAS
PubMed
Google Scholar
Mahoney MW, Jorgensen WL (2000) A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys 112(20):8910–8922.
CAS
Article
Google Scholar
Mallajosyula SS, Guvench O, Hatcher E, Mackerell AD (2012) CHARMM additive all-atom force field for phosphate and sulfate linked to carbohydrates. J Chem Theor Comput 8(2):759–776
CAS
Google Scholar
Matthews JF, Beckham GT, Bergenstrahle-Wohlert M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of cellulose I\(\beta\) simulations with three carbohydrate force fields. J Chem Theory Comput 8(2):735–748
CAS
PubMed
Google Scholar
Matthews J, Skopec C, Mason P, Zuccato P, Torget R, Sugiyama J, Himmel M, Brady J (2006) Computer simulation studies of microcrystalline cellulose I\(\beta\). Carbohydr Res 341:138–152
CAS
Article
PubMed
Google Scholar
Mazeau K (2005) Structural micro-heterogeneities of crystalline I\(\beta\)-cellulose. Cellulose 12(4):339–349
CAS
Google Scholar
Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107(10):2394–2403
CAS
Google Scholar
Mazeau K, Rivet A (2008) Wetting the (110) and (100) surfaces of Ibeta cellulose studied by molecular dynamics. Biomacromolecules 9(4):1352–1354
CAS
PubMed
Google Scholar
Miyamoto H, Schnupf U, Crowley MF, Brady JW (2016) Comparison of the simulations of cellulosic crystals with three carbohydrate force fields. Carbohydr Res 422:17–23
CAS
PubMed
Google Scholar
Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994
CAS
PubMed
Google Scholar
Nawrocki G, Cazade PA, Thompson D, Cieplak M (2015) Peptide recognition capabilities of cellulose in molecular dynamics simulations. J Phys Chem C 119(43):24,404–24,416
CAS
Google Scholar
Nekiunaite L, Petrovic DM, Westereng B, Vaaje-Kolstad G, Hachem MA, Varnai A, Eijsink VG (2016) FgLPMO9A from Fusarium graminearum cleaves xyloglucan independently of the backbone substitution pattern. FEBS Lett 590(19):3346–3356
CAS
PubMed
Google Scholar
Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37(20):7683–7687
CAS
Google Scholar
Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose I\(\beta\). Biomacromolecules 9(11):3133–3140
CAS
PubMed
Google Scholar
Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose I\(\beta\) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082
CAS
PubMed
Google Scholar
Oehme DP, Downton MT, Doblin MS, Wagner J, Gidley MJ, Bacic A (2015) Unique aspects of the structure and dynamics of elementary I\(\beta\) cellulose microfibrils revealed by computational simulations. Plant Physiol 168(1):3–17
CAS
PubMed
PubMed Central
Google Scholar
Oehme DP, Yang H, Kubicki JD (2018) An evaluation of the structures of cellulose generated by the CHARMM force field: comparisons to in planta cellulose. Cellulose 25(7):3755–3777
CAS
Google Scholar
O’Neill H, Pingali SV, Petridis L, He J, Mamontov E, Hong L, Urban V, Evans B, Langan P, Smith JC, Davison BH (2017) Dynamics of water bound to crystalline cellulose. Sci Rep 7:11840
Google Scholar
Paliwal R, Rawat AP, Rawat M, Rai JP (2012) Bioligninolysis: recent updates for biotechnological solution. Appl Biochem Biotechnol 167(7):1865–1889
CAS
PubMed
Google Scholar
Parrinello M, Rahman A (1981) Polymorphic transitions in single-crystals: a new molecular-dynamics method. J Appl Phys 52(12):7182–7190
CAS
Google Scholar
Parrinello M, Rahman A, Vashishta P (1983) Structural transitions in superionic conductors. Phys Rev Lett 50(14):1073–1076
CAS
Google Scholar
Phillips CM, Beeson WT, Cate JH, Marletta MA (2011) Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 6(12):1399–1406
CAS
PubMed
Google Scholar
Prates ET, Stankovic I, Silveira RL, Liberato MV, Henrique-Silva F, Pereira N, Polikarpov I, Skaf MS (2013) X-ray structure and molecular dynamics simulations of endoglucanase 3 from Trichoderma harzianum: structural organization and substrate recognition by endoglucanases that lack cellulose binding module. PLoS ONE 8(3):e59,069
CAS
Google Scholar
Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854
CAS
PubMed
PubMed Central
Google Scholar
Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JC, Johansen KS, Krogh KB, Jorgensen CI, Tovborg M, Anthonsen A, Tryfona T, Walter CP, Dupree P, Xu F, Davies GJ, Walton PH (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA 108(37):15,079–15,084
CAS
Google Scholar
Raman EP, Guvench O, MacKerell AD (2010) CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses. J Phys Chem B 114(40):12,981–12,994
CAS
Google Scholar
Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39(8):2883–2890
CAS
Google Scholar
Suarez-Martinez PC, Batys P, Sammalkorpi M, Lutkenhaus JL (2019) Time-temperature and time-water superposition principles applied to poly(allylamine)/poly(acrylic acid) complexes. Macromolecules 52(8):3066–3074
CAS
Google Scholar
Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175
CAS
Google Scholar
Tan TC, Kracher D, Gandini R, Sygmund C, Kittl R, Haltrich D, Hallberg BM, Ludwig R, Divne C (2015) Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat Commun 6:7542
PubMed
Google Scholar
Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sorlie M, Eijsink VG (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330(6001):219–222
CAS
PubMed
Google Scholar
VanderHart DL, Atalla RH (1987) Further carbon-13 NMR evidence for the coexistence of two crystalline forms in native celluloses, Chap 5. In: The structures of cellulose. ACS symposium series, vol 340. American Chemical Society, USA, pp 88–118
CAS
Article
Google Scholar
Vanhatalo K, Dahl O (2014) Effect of mild acid hydrolysis parameters on properties of microcrystalline cellulose. BioResources 9(47):4729–4740
Google Scholar
Vanhatalo K, Maximova N, Perander AM, Johansson LS, Haimi E, Dahl O (2016) Comparison of conventional and lignin-rich microcrystalline cellulose. BioResources 11(2):4037–4054
CAS
Google Scholar
Vega C, Abascal JL (2011) Simulating water with rigid non-polarizable models: a general perspective. Phys Chem Chem Phys 13(44):19,663–19,688
CAS
Google Scholar
Velazquez G, Herrera-Gomez A, Martin-Polo M (2003) Identification of bound water through infrared spectroscopy in methylcellulose. J Food Eng 59(1):79–84
Google Scholar
Vermaas JV, Crowley MF, Beckham GT, Payne CM (2015) Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases. J Phys Chem B 119(20):6129–6143
CAS
PubMed
Google Scholar
Vietor RJ, Newman RH, Ha MA, Apperley DC, Jarvis MC (2002) Conformational features of crystal-surface cellulose from higher plants. Plant J 30(6):721–731
CAS
PubMed
Google Scholar
Ward OP, Moo-Young M (1989) Enzymatic degradation of cell wall and related plant polysaccharides. Crit Rev Biotechnol 8(4):237–274
CAS
PubMed
Google Scholar
Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VG, Igarashi K, Samejima M, Stahlberg J, Horn SJ, Sandgren M (2011) The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS ONE 6(11):e27,807
CAS
Google Scholar
Westereng B, Agger JW, Horn SJ, Vaaje-Kolstad G, Aachmann FL, Stenstrøm YH, Eijsink VG (2013) Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases. J Chromatogr A 1271(1):144–152
CAS
PubMed
Google Scholar
Yu Y, Wu H (2009) Characteristics and precipitation of glucose oligomers in the fresh liquid products obtained from the hydrolysis of cellulose in hot-compressed water. Ind Eng Chem Res 48(23):10,682–10,690
CAS
Google Scholar
Yui T, Hayashi S (2007) Molecular dynamics simulations of solvated crystal models of cellulose I(alpha) and III(I). Biomacromolecules 8(3):817–824
CAS
PubMed
Google Scholar
Yui T, Nishimura S, Akiba S, Hayashi S (2006) Swelling behavior of the cellulose Ibeta crystal models by molecular dynamics. Carbohydr Res 341(15):2521–2530
CAS
PubMed
Google Scholar
Zhao X, Rignall TR, McCabe C, Adney WS, Himmel ME (2008) Molecular simulation evidence for processive motion of trichoderma reesei Cel7A during cellulose depolymerization. Chem Phys Lett 460(1):284–288
CAS
Google Scholar
Zhao X, Xiong L, Zhang M, Bai F (2016) Towards efficient bioethanol production from agricultural and forestry residues: Exploration of unique natural microorganisms in combination with advanced strain engineering. Bioresour Technol 215:84–91
CAS
PubMed
Google Scholar
Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79(4):1086–1093
CAS
Google Scholar