Skip to main content
Log in

Humidity sensitive cellulose composite aerogels with enhanced mechanical performance

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

It is a long-standing issue to develop conductive polymer composites as humidity sensor with rapid response, high reproducibility and good long-term stability. Herein, a simple, efficient, and environmentally benign strategy was proposed to fabricate highly porous, robust and conductive cellulose composite aerogels. Owing to the intrinsic high specific surface area and well-defined electrically conductive network, the as-prepared cellulose composite aerogels were highly sensitive to water vapor with a relative resistance response value of as high as ~ 1000% at a CNT loading of 0.19 vol%. The dense hydrogen bonding network endowed high reproducibility and good long-term stability to cellulose composite aerogels. Moreover, a significant improvement in the mechanical properties of cellulose composite aerogels was achieved, outperforming neat cellulose aerogel with the increments of ~ 149.2% and ~ 242.1% in compressive strength and modulus, respectively. The green, robust, highly sensitive cellulose composite aerogels are in great potential need as humidity sensors in biology and automated industrial processes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog Polym Sci 29:699–766

    CAS  Google Scholar 

  • Anderson RE et al (2010) Multifunctional single-walled carbon nanotube–cellulose composite paper. J Mater Chem 20:2400–2407

    CAS  Google Scholar 

  • Barkauskas J (1997) Investigation of conductometric humidity sensors. Talanta 44:1107–1112

    CAS  Google Scholar 

  • Bouvree A, Feller J-F, Castro M, Grohens Y, Rinaudo M (2009) Conductive polymer nano-biocomposites (CPC): chitosan-carbon nanoparticle a good candidate to design polar vapour sensors. Sens Actuators B Chem 138:138–147

    CAS  Google Scholar 

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548

    CAS  Google Scholar 

  • Castro M, Kumar B, Feller J-F, Haddi Z, Amari A, Bouchikhi B (2011) Novel e-nose for the discrimination of volatile organic biomarkers with an array of carbon nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors. Sens Actuators B Chem 159:213–219

    CAS  Google Scholar 

  • Chen Z, Lu C (2005) Humidity sensors: a review of materials and mechanisms. Sens Lett 3:274–295

    CAS  Google Scholar 

  • Chen Y, Potschke P, Pionteck J, Voit B, Qi HS (2018) Smart cellulose/graphene composites fabricated by in situ chemical reduction of graphene oxide for multiple sensing applications. J Mater Chem A 6:7777–7785

    CAS  Google Scholar 

  • Covington J, Gardner J, Briand D, De Rooij N (2001) A polymer gate FET sensor array for detecting organic vapours. Sens Actuators B Chem 77:155–162

    CAS  Google Scholar 

  • Farahani H, Wagiran R, Hamidon M (2014) Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14:7881–7939

    Google Scholar 

  • Feller J-F, Lu J, Zhang K, Kumar B, Castro M, Gatt N, Choi H (2011) Novel architecture of carbon nanotube decorated poly(methyl methacrylate) microbead vapour sensors assembled by spray layer by layer. J Mater Chem 21:4142–4149

    CAS  Google Scholar 

  • Gartia MR et al (2012) The microelectronic wireless nitrate sensor network for environmental water monitoring. J Environ Monit 14:3068–3075

    CAS  Google Scholar 

  • Hamedi MM et al (2014) Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 8:2467–2476

    CAS  Google Scholar 

  • Han JW, Kim B, Li J, Meyyappan M (2012) Carbon nanotube based humidity sensor on cellulose paper. J Phys Chem C 116:22094–22097

    CAS  Google Scholar 

  • Han SB, Alvi NU, Granlof L, Granberg H, Berggren M, Fabiano S, Crispin X (2019) A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels. Adv Sci 6:1802128

    Google Scholar 

  • Huang H-D, Liu C-Y, Zhang L-Q, Zhong G-J, Li Z-M (2015a) Simultaneous reinforcement and toughening of carbon nanotube/cellulose conductive nanocomposite films by interfacial hydrogen bonding. ACS Sustain Chem Eng 3:317–324

    CAS  Google Scholar 

  • Huang H-D, Liu C-Y, Zhou D, Jiang X, Zhong G-J, Yan D-X, Li Z-M (2015b) Cellulose composite aerogel for highly efficient electromagnetic interference shielding. J Mater Chem A 3:4983–4991

    CAS  Google Scholar 

  • Jiang K, Fei T, Zhang T (2014) Humidity sensing properties of LiCl-loaded porous polymers with good stability and rapid response and recovery. Sens Actuators B Chem 199:1–6

    Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Ang Chem Int Ed 44:3358–3393

    CAS  Google Scholar 

  • Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromolecules 14:1160–1165

    CAS  Google Scholar 

  • Liu C-Y, Zhong G-J, Huang H-D, Li Z-M (2014) Phase assembly-induced transition of three dimensional nanofibril-to sheet-networks in porous cellulose with tunable properties. Cellulose 21:383–394

    CAS  Google Scholar 

  • Liu J et al (2018) Environmentally responsive composite films fabricated using silk nanofibrils and silver nanowires. J Mater Chem C 6:12940–12947

    CAS  Google Scholar 

  • Matsuguchi M, Sadaoka Y, Sakai Y, Kuroiwa T, Ito A (1991) A capacitive-type humidity sensor using cross‐linked poly(methyl methacrylate) thin films. J Electrochem Soc 138:1862–1865

    CAS  Google Scholar 

  • Packirisamy M, Stiharu I, Li X, Rinaldi G (2005) A polyimide based resistive humidity sensor. Sens Rev 25:271–276

    Google Scholar 

  • Pang H, Bao Y, Xu L, Yan D-X, Zhang W-Q, Wang J-H, Li Z-M (2013) Double-segregated carbon nanotube–polymer conductive composites as candidates for liquid sensing materials. J Mater Chem A 1:4177–4181

    CAS  Google Scholar 

  • Parikh K, Cattanach K, Rao R, Suh D-S, Wu A, Manohar SK (2006) Flexible vapour sensors using single walled carbon nanotubes. Sens Actuators B Chem 113:55–63

    CAS  Google Scholar 

  • Qi H, Liu J, Gao S, Mäder E (2013a) Multifunctional films composed of carbon nanotubes and cellulose regenerated from alkaline–urea solution. J Mater Chem A 1:2161–2168

    CAS  Google Scholar 

  • Qi HS, Mäder E, Liu JW (2013b) Unique water sensors based on carbon nanotube-cellulose composites. Sens Actuators B Chem 185:225–230

    CAS  Google Scholar 

  • Qi HS, Liu JW, Deng YH, Gao SL, Mäder E (2014) Cellulose fibres with carbon nanotube networks for water sensing. J Mater Chem A 2:5541–5547

    CAS  Google Scholar 

  • Qi HS, Liu JW, Pionteck J, Pötschke P, Mäder E (2015a) Carbon nanotube-cellulose composite aerogels for vapour sensing. Sens Actuators B Chem 213:20–26

    CAS  Google Scholar 

  • Qi HS, Schulz B, Vad T, Liu JW, Mäder E, Seide G, Gries T (2015b) Novel carbon nanotube/cellulose composite fibers as multifunctional materials. ACS Appl Mater Interfaces 7:22404–22412

    CAS  Google Scholar 

  • Qian CC et al (2019) All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy 63:103885

    CAS  Google Scholar 

  • Ren F, Li Z, Tan W-Z, Liu X-H, Sun Z-F, Ren P-G, Yan D-X (2018) Facile preparation of 3D regenerated cellulose/graphene oxide composite aerogel with highly-efficiency adsorption towards methylene blue. J Colloid Interface Sci 532:58–67

    CAS  Google Scholar 

  • Traversa E (1995) Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens Actuators B Chem 23:135–156

    CAS  Google Scholar 

  • Xu SM, Yu WJ, Yao XL, Zhang Q, Fu Q (2016a) Nanocellulose-assisted dispersion of graphene to fabricate poly(vinyl alcohol)/graphene nanocomposite for humidity sensing. Compos Sci Technol 131:67–76

    CAS  Google Scholar 

  • Xu Z, Wang N, Li N, Zheng G, Dai K, Liu C, Shen C (2016b) Liquid sensing behaviors of conductive polypropylene composites containing hybrid fillers of carbon fiber and carbon black. Compos Part B Eng 94:45–51

    CAS  Google Scholar 

  • Yamazoe N, Shimizu Y (1986) Humidity sensors: principles and applications. Sens Actuators 10:379–398

    CAS  Google Scholar 

  • Yun S, Kim J (2010) Multi-walled carbon nanotubes–cellulose paper for a chemical vapor sensor. Sens Actuators B Chem 150:308–313

    CAS  Google Scholar 

  • Zhang JY, Dichiara AB, Novosselov I, Gao DY, Chung JH (2019) Polyacrylic acid coated carbon nanotube-paper composites for humidity and moisture sensing. J Mater Chem C 7:5374–5380

    CAS  Google Scholar 

  • Zhou Z-H et al (2019) Structuring dense three-dimensional sheet-like skeleton networks in biomass-derived carbon aerogels for efficient electromagnetic interference shielding. Carbon 152:316–324

    CAS  Google Scholar 

  • Zhu G-J, Ren P-G, Guo H, Jin Y-L, Yan D-X, Li Z-M (2019a) Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires. ACS Appl Mater Interfaces 11:23649–23658

    CAS  Google Scholar 

  • Zhu PH, Liu Y, Fang ZQ, Kuang YD, Zhang YZ, Peng CX, Chen G (2019b) Flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotube composite film. Langmuir 35:4834–4842

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Key Research and development Program of China (Grant No. 2018YFB0704200), the National Natural Science Foundation of China (Grant Nos. 51803140, 51973141, 51533004, and 21776186), the Science and Technology Department of Sichuan Province (Grant No. 2018JY0584), the State Key Laboratory of Polymer Materials Engineering (Grant No. sklpme2019-2-06) and the Fundamental Research Funds for the Central Universities (yj201795).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Xu or Hua-Dong Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CY., Chen, SP., Xu, L. et al. Humidity sensitive cellulose composite aerogels with enhanced mechanical performance. Cellulose 27, 6287–6297 (2020). https://doi.org/10.1007/s10570-020-03171-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03171-0

Keywords

Navigation