Skip to main content
Log in

Effect of vacuum/pressure cycles on cell wall composition and structure of poplar wood

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A comparison was made of the hygroscopicity, cell wall chemical composition and crystallinity of recently peeled poplar (Populus spp.) wood and wood of the same species subjected to repeated cycles (20, 60 and 80) of vacuum/pressure (85 kPa/600 kPa) and soaking in an autoclave followed by oven drying. The 15 and 35 °C sorption isotherms were obtained using the saturated salt method and fitted with the Guggenheim–Anderson–de Boer model. Chemical composition was determined and the infrared spectra and X-ray powder and 2D diffractograms were obtained to identify differences in the wood with and without cycles. The cycles caused a statistically significant decrease in equilibrium moisture content (EMC) between the wood without cycles and the wood with cycles, a statistically significant lower contribution by the monolayer as the number of cycles increased (in the 15 °C isotherm in adsorption without cycles from 8.12% EMC to 6.16% with 80 cycles, in desorption from 10.23 to 8.13%; in the 35 °C isotherm from 7.45 to 5.57% in adsorption and from 8.86 to 6.54% in desorption), a decrease in the area of the hysteresis loop with significant differences between the wood without cycles and the wood with cycles, a statistically significant decrease in the percentage of cell wall components (in cellulose and extractives, in lignin content between the wood without cycles and wood with 60 and 80 cycles, and in hemicellulose between the wood without cycles and the wood with 80 cycles), a statistically significant increase in crystallinity between the wood without cycles (CRI% 52.1%) and the wood with cycles (CRI% 81.60–92.50%), and reorganisation of the cell wall ultrastructure, as seen in the increased size of the cellulose crystal of the fraction oriented parallel to the fibre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AENOR (2013) Standard UNE-EN 14080. Estructuras de madera. Madera laminada encolada y madera maciza encolada. Requisitos Anexo C. Ensayo de delaminación en planos de encolado

  • Avramidis S (1997) The basics of sorption. In: Proceedings of international conference of COST action E8: mechanical performance of wood and wood products, Copenhagen, pp 1–16

  • Broda M, Majka J, Olek W, Mazela B (2018) Dimensional stability and hygroscopic properties of waterlogged archaeological wood treated with alkoxysilanes. Int Biodeterior Biodegrad 133:34–41. https://doi.org/10.1016/j.ibiod.2018.06.007

    Article  CAS  Google Scholar 

  • Čermák P, Vahtikari K, Rautkari L, Laine K, Horáček P, Baar J (2016) The effect of wetting cycles on moisture behaviour of thermally modified Scots pine (Pinus sylvestris L.) wood. J Mater Sci 51(3):1504–1511. https://doi.org/10.1007/s10853-015-9471-5

    Article  CAS  Google Scholar 

  • Christensen GN, Kelsey KE (1959) The rate of sorption of water vapor by wood. Holz Roh Werkst 17:178–188

    Article  CAS  Google Scholar 

  • Dominguez-Gasca N, Benavides-Reyes C, Sánchez-Rodríguez E, Rodríguez-Navarro AB (2019) Changes in avian cortical and medullary bone mineral composition and organization during acid-induced demineralization. Eur J Miner. https://doi.org/10.1127/ejm/2019/0031-2826

    Article  Google Scholar 

  • Easty DB, Malcolm EW (1982) Estimation of pulping yield in continuous digesters from carbohydrate and lignin determinations. Tappi J 65:78–80

    CAS  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, New York

    Book  Google Scholar 

  • Esteban LG, Gril J, de Palacios P, Guindeo A (2005) Reduction of wood hygroscopicity and associated dimensional response by repeated humidity cycles. Ann For Sci 62:275–284. https://doi.org/10.1051/forest:2005020

    Article  Google Scholar 

  • Esteban LG, Fernandez FG, Guindeo A, de Palacios P, Gril J (2006) Comparison of the hygroscopic behaviour of 205-year-old and recently cut juvenile wood from Pinus sylvestris L. Ann For Sci 63:309–317. https://doi.org/10.1051/forest:2006010

    Article  Google Scholar 

  • Esteban LG, de Palacios P, Fernandez FG, Guindeo A, Cano NN (2008a) Sorption and thermodynamic properties of old and new Pinus sylvestris wood. Wood Fiber Sci 40:111–121

    CAS  Google Scholar 

  • Esteban LG, de Palacios P, Fernandez FG, Guindeo A, Conde M, Baonza V (2008b) Sorption and thermodynamic properties of juvenile Pinus sylvestris L. wood after 103 years of submersion. Holzforschung 62:745–751. https://doi.org/10.1515/HF.2008.106

    Article  CAS  Google Scholar 

  • Esteban LG, de Palacios P, García Fernandez F, Martin JA, Genova M, Fernandez-Golfin JI (2009) Sorption and thermodynamic properties of buried juvenile Pinus sylvestris L. wood aged 1,170 ± 40 BP. Wood Sci Technol 43:140–151. https://doi.org/10.1007/s00226-009-0261-6

    Article  CAS  Google Scholar 

  • Esteban LG, de Palacios P, García Fernandez F, García-Amorena I (2010) Effects of burial of Quercus spp. wood aged 5910 ± 250 BP on sorption and thermodynamic properties. Int Biodeterior Biodegrad 64:371–377. https://doi.org/10.1016/j.ibiod.2010.01.010

    Article  CAS  Google Scholar 

  • Fredriksson M, Thybring EE (2018) Scanning or desorption isotherms? Characterising sorption hysteresis of wood. Cellulose 25(8):4477–4485. https://doi.org/10.1007/s10570-018-1898-9

    Article  CAS  Google Scholar 

  • French AD, Kim HJ (2018) Cotton fiber structure. In: Fang D (ed) Cotton fiber, physics and biology. Springer, New York, pp 13–39

    Chapter  Google Scholar 

  • Hernandez RE (2007) Moisture sorption properties of hardwoods as affected by their extraneous substances, wood density, and interlocked grain. Wood Fiber Sci 39:132–145

    CAS  Google Scholar 

  • Hill CAS (2006) Wood modification. Chemical, thermal and other processes. Wiley, London

    Book  Google Scholar 

  • Hill CAS, Jones D (1996) The dimensional stabilisation of Corsican pine sapwood by reaction with carboxylic acid anhydrides. The effect of chain length. Holzforschung 50:457–462. https://doi.org/10.1515/hfsg.1996.50.5.457

    Article  CAS  Google Scholar 

  • Hill CAS, Jones D (1999) Dimensional changes in Corsican pine sapwood due to chemical modification with linear chain anhydrides. Holzforschung 53:267–271. https://doi.org/10.1515/HF.1999.045

    Article  CAS  Google Scholar 

  • Hill CAS, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112:1524–1537. https://doi.org/10.1002/app.29725

    Article  CAS  Google Scholar 

  • Hill CAS, Norton AJ, Newman G (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514. https://doi.org/10.1007/s00226-010-0305-y

    Article  CAS  Google Scholar 

  • Jones PD, Schimleck LR, Peter GF, Daniels RF, Clark A III (2006) Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy. Wood Sci Technol 40:709–720. https://doi.org/10.1007/s00226-006-0085-6

    Article  CAS  Google Scholar 

  • Jowitt R, Wagstaffe PJ (1989) The certification of water content of microcrystalline cellulose (MCC) at 10 water activities. Commission of the European Communities. Community Bureau of Reference. BCR. CRM, EUR 12429, EN, Brussels, 302

  • Majka J, Czajkowski L, Olek W (2016) Effects of cyclic changes in relative humidity on the sorption hysteresis of thermally modified spruce wood. BioResources 11(2):5265–5275. https://doi.org/10.15376/biores.11.2.5265-5275

    Article  CAS  Google Scholar 

  • Rautkari L, Hill C, Curling S, Jalaludin Z, Ormondroyd G (2013) What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? J Mater Sci 48:6352–6356. https://doi.org/10.1007/s10853-013-7434-2

    Article  CAS  Google Scholar 

  • Rowell RM (1980) Distribution of reacted chemicals in southern pine modified with methyl isocyanate. Wood Sci 13:102–110

    CAS  Google Scholar 

  • Siau JF (1995) Wood: influence of moisture on physical properties. Virginia Polytechnic Institute and State University, Blackburg

    Google Scholar 

  • Simon C, Esteban LG, de Palacios P, Fernandez FG, García-Iruela A, Martín-Sampedro R, Eugenio ME (2017) Sorption and thermodynamic properties of wood of Pinus canariensis C. Sm. ex DC. buried in volcanic ash during eruption. Wood Sci Technol 51:517–534. https://doi.org/10.1007/s00226-016-0884-3

    Article  CAS  Google Scholar 

  • Simpson W (1980) Sorption theories applied to wood. Wood Fiber Sci 12:183–195

    Google Scholar 

  • Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass. National Renewable Energy Laboratory (NREL) Laboratory Analytical Procedure (LAP). http://www.nrel.gov/biomass/pdfs/42619.pdf. Accessed 27 March 2015

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker S (2012) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory (NREL) Laboratory Analytical Procedure (LAP). http://www.nrel.gov/biomass/pdfs/42618.pdf. Accessed 27 March 2015

  • Song KL, Yin YF, Salmen L, Xiao F, Jiang X (2014) Changes in the properties of wood cell walls during the transformation from sapwood to heartwood. J Mater Sci 49:1734–1742. https://doi.org/10.1007/s10853-013-7860-1

    Article  CAS  Google Scholar 

  • Themelin A, Rebollo J, Thibaut A (1997) Method for defining the behaviour of lignocellulosic produces at sorption: application to tropical wood species. In: Proceedings of international conference of COST action E8: mechanical performance of wood and wood products, Copenhagen, pp 17–32

  • Thybring EE, Thygesen LG, Burgert I (2017) Hydroxyl accessibility in wood cell walls as affected by drying and re-wetting procedures. Cellulose 24:2375–2384. https://doi.org/10.1007/s10570-017-1278-x

    Article  CAS  Google Scholar 

  • Toby BH (2006) R factors in Rietveld analysis: how good is good enough? Powder Diffr 21:67–70. https://doi.org/10.1154/1.2179804

    Article  CAS  Google Scholar 

  • Wangaard FF, Granados LA (1967) The effect of extractives on water-vapor sorption by wood. Wood Sci Technol 1:253–277

    Article  CAS  Google Scholar 

  • Wentzel M, Altgen M, Militz H (2018) Analyzing reversible changes in hygroscopicity of thermally modified eucalypt wood from open and closed reactor systems. Wood Sci Technol 52:889–907. https://doi.org/10.1007/s00226-018-1012-3

    Article  CAS  Google Scholar 

  • Willems W (2018) Hygroscopic wood moisture: single and dimerized water molecules at hydroxyl-pair sites? Wood Sci Technol 52(3):777–791. https://doi.org/10.1007/s00226-018-0998-x

    Article  CAS  Google Scholar 

  • Zelinka SL, Glass SV, Thybring EE (2018) Myth versus reality: do parabolic sorption isotherm models reflect actual wood–water thermodynamics? Wood Sci Technol 52:1701–1706. https://doi.org/10.1007/s00226-018-1035-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto García-Iruela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Iruela, A., Esteban, L.G., García Fernández, F. et al. Effect of vacuum/pressure cycles on cell wall composition and structure of poplar wood. Cellulose 26, 8543–8556 (2019). https://doi.org/10.1007/s10570-019-02692-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02692-7

Keywords

Navigation