Skip to main content
Log in

Microwave-assisted formic acid extraction for high-purity cellulose production

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The effective separation of hemicelluloses and cellulose is the prerequisite for creating high-value products using wood wastes. In this study, a novel process including mechanical pre-beating, microwave-assisted formic acid (MAFA) extraction, and bleaching treatment was developed for producing high-purity cellulose from the pulp fibers of hardwood waste. Most hemicelluloses and lignin were simultaneously removed (i.e., hemicelluloses were separated from cellulose) due to the MAFA treatment. The pulp fibers were pre-beaten for a loose fiber structure for the formic acid impregnation. The results showed that the introduction of microwave could significantly enhance hemicellulose removal and separation from pulp fibers. The MAFA treatment was performed under atmospheric pressure and mild condition (≤ 100 °C), which led to the significant increase in the lignin yield, cellulose content, crystallinity index, and crystallite homogeneity. After the beating pretreatment and MAFA process (88% formic acid, 100 °C, 4 + 4 h), the hemicellulose removal rate reached 75.5%, and the cellulose purity was as high as 93.2% along with a maximal cellulose crystallinity index (77.5%) and minimum crystallite cross-sectional area (12.40 nm2).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afra E, Yousefi H, Hadilam MM, Nishino T (2013) Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps. Carbohydr Polym 97(2):725–730

    Article  CAS  PubMed  Google Scholar 

  • Carmen F, Michael H, Mikhail I, Annariikka R, Herwig S, Herbert S (2013) Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromol 14(6):1741–1750

    Article  CAS  Google Scholar 

  • Chen Y, Wang Y, Wan J, Ma Y (2010) Crystal and pore structure of wheat straw cellulose fiber during recycling. Cellulose 17(2):329–338

    Article  CAS  Google Scholar 

  • Chen C, Boldor D, Aita G, Walker M (2012) Ethanol production from sorghum by a microwave-assisted dilute ammonia pretreatment. Bioresour Technol 110:190–197

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhao J, Hu T, Zhao X, Liu D (2015) A comparison of several organosolv pretreatments for improving the enzymatic hydrolysis of wheat straw: substrate digestibility, fermentability and structural features. Appl Energy 150:224–232

    Article  CAS  Google Scholar 

  • Cheng X, Li X, Xu K, Huang Q, Sun H, Wu Y (2017) Effect of thermal treatment on functional groups and degree of cellulose crystallinity of eucalyptus wood (Eucalyptus grandis × Eucalyptus urophylla). For Prod J 67(1):135–140

    CAS  Google Scholar 

  • Diaz AB, Moretti M, Bezerra-Bussoli C, Carreira Nunes C, Blandino A, da Silva R, Gomes E (2015) Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresour Technol 185:316–323

    Article  CAS  PubMed  Google Scholar 

  • Duan D, Ruan R, Wang Y, Liu Y, Dai L, Zhao Y, Zhou Y, Wu Q (2018) Microwave-assisted acid pretreatment of alkali lignin: effect on characteristics and pyrolysis behavior. Bioresour Technol 251:57–62

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Li G, Li X, Zhu N, Xiao B, Li J, Wang Y (2016) Enhancement of biomass conversion in catalytic fast pyrolysis by microwave-assisted formic acid pretreatment. Bioresour Technol 214:520–527

    Article  CAS  PubMed  Google Scholar 

  • Haverty D, Dussan K, Piterina AV, Leahy JJ, Hayes MHB (2012) Autothermal, single-stage, performic acid pretreatment of Miscanthus × giganteus for the rapid fractionation of its biomass components into a lignin/hemicellulose-rich liquor and a cellulase-digestible pulp. Bioresour Technol 109:173–177

    Article  CAS  PubMed  Google Scholar 

  • He J, Zhang M, Cui S, Wang SY (2010) High-quality cellulose triacetate prepared from bamboo dissolving pulp. J Appl Polym Sci 113(1):456–465

    Article  CAS  Google Scholar 

  • Hou X, Wang Z, Sun J, Li M, Wang S, Chen K, Gao Z (2019) A microwave-assisted aqueous ionic liquid pretreatment to enhance enzymatic hydrolysis of Eucalyptus and its mechanism. Bioresour Technol 272:99–104

    Article  CAS  PubMed  Google Scholar 

  • Huijgen WJJ, Smit AT, de Wild PJ, den Uil H (2012) Fractionation of wheat straw by prehydrolysis, organosolv delignification and enzymatic hydrolysis for production of sugars and lignin. Bioresour Technol 114:389–398

    Article  CAS  PubMed  Google Scholar 

  • Hult EL, Iversen T, Sugiyama J (2003) Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose 10(2):103–110

    Article  CAS  Google Scholar 

  • Jahan MS, Chowdhury DAN, Islam MK (2007) Atmospheric formic acid pulping and TCF bleaching of dhaincha (Sesbania aculeata), kash (Saccharum spontaneum) and banana stem (Musa Cavendish). Ind Crop Prod 26(3):324–331

    Article  CAS  Google Scholar 

  • Jinquan W, Yan W, Qing X (2010) Effects of hemicellulose removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp. Bioresour Technol 101(12):4577–4583

    Article  CAS  Google Scholar 

  • Kang T, Paulapuro H (2006) Effect of external fibrillation on paper strength. Pulp Pap Can 107:51–54

    CAS  Google Scholar 

  • Kristianto I, Limarta SO, Lee H, Ha J-M, Suh DJ, Jae J (2017) Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media. Bioresour Technol 234:424–431

    Article  CAS  PubMed  Google Scholar 

  • Kupiainen L, Ahola J, Tanskanen J (2012) Hydrolysis of organosolv wheat pulp in formic acid at high temperature for glucose production. Bioresour Technol 116:29–35

    Article  CAS  PubMed  Google Scholar 

  • Li H, Abrar S, Msarwar J, Ni Y, Adriaan VH (2010) Hemicellulose removal from hardwood chips in the pre-hydrolysis step of the kraft-based dissolving pulp production process. J Wood Chem Technol 30(1):48–60

    Article  CAS  Google Scholar 

  • Li J, Hu H, Li H, Huang L, Chen L, Ni Y (2017) Kinetics and mechanism of hemicelluloses removal from cellulosic fibers during the cold caustic extraction process. Bioresour Technol 234:61–66

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhang S, Li H, Ouyang X, Huang L, Ni Y, Chen L (2018) Cellulase pretreatment for enhancing cold caustic extraction-based separation of hemicelluloses and cellulose from cellulosic fibers. Bioresour Technol 251:1–6

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Sun B, Zheng X, Yu L, Li J (2018) Integrated microwave and alkaline treatment for the separation between hemicelluloses and cellulose from cellulosic fibers. Bioresour Technol 247:859–863

    Article  CAS  PubMed  Google Scholar 

  • Mihiretu GT, Brodin M, Chimphango AF, Øyaas K, Hoff BH, Görgens JF (2017) Single-step microwave-assisted hot water extraction of hemicelluloses from selected lignocellulosic materials—a biorefinery approach. Bioresour Technol 241:669–680

    Article  CAS  PubMed  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33

    Article  CAS  Google Scholar 

  • Rissanen JV, Murzin DY, Salmi T, Grénman H (2016) Aqueous extraction of hemicelluloses from spruce—from hot to warm. Bioresour Technol 199:279–282

    Article  CAS  PubMed  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Snelders J, Dornez E, Benjelloun-Mlayah B, Huijgen WJJ, de Wild PJ, Gosselink RJA, Gerritsma J, Courtin CM (2014) Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process. Bioresour Technol 156:275–282

    Article  CAS  PubMed  Google Scholar 

  • Spigno G, Pizzorno T, De Faveri DM (2008) Cellulose and hemicelluloses recovery from grape stalks. Bioresour Technol 99(10):4329–4337

    Article  CAS  PubMed  Google Scholar 

  • Vega AD, Ligero P (2017) Formosolv fractionation of hemp hurds. Ind Crop Prod 97:252–259

    Article  CAS  Google Scholar 

  • Wang Q, Xiao S, Shi Sheldon Q, Cai L (2018) The effect of delignification on the properties of cellulosic fiber material. Holzforschung 72:443–449

    Article  CAS  Google Scholar 

  • Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S (2015) Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 4(1):26–32

    Article  CAS  Google Scholar 

  • Wistara N, Zhang X, Young RA (1999) Properties and treatments of pulps from recycled paper. Part II. Surface properties and crystallinity of fibers and fines. Cellulose 6(4):325–348

    Article  CAS  Google Scholar 

  • Xu J, Fu Y, Tian G, Li Q, Na L, Qin M, Wang Z (2018) Mild and efficient extraction of hardwood hemicellulose using recyclable formic acid/water binary solvent. Bioresour Technol 254:353–356

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Deng H, Lin L, Sun Y, Pan C, Liu S (2010) Isolation and characterization of wheat straw lignin with a formic acid process. Bioresour Technol 101(7):2311–2316

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-M, Meng L-Y, Xu F, Sun R-C (2011) Pretreatment of partially delignified hybrid poplar for biofuels production: characterization of organosolv hemicelluloses. Ind Crop Prod 33(2):310–316

    Article  CAS  Google Scholar 

  • Zhang W, Du B, Qin Z (2014) Catalytic effect of water, formic acid, or sulfuric acid on the reaction of formaldehyde with OH radicals. J Phys Chem A 118(26):4797–4807

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Liu D (2012) Fractionating pretreatment of sugarcane bagasse by aqueous formic acid with direct recycle of spent liquor to increase cellulose digestibility-the formiline process. Bioresour Technol 117:25–32

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Yuan Z, Kapu NS, Chang XF, Beatson R, Trajano HL, Martinez DM (2017) Increasing efficiency of enzymatic hemicellulose removal from bamboo for production of high-grade dissolving pulp. Bioresour Technol 223:40–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (No. 2017YFD0601004) and the Applied Technology Research and Development Project of Harbin (No. 2016RAXXJ004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengling Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Xiao, S., Shi, S.Q. et al. Microwave-assisted formic acid extraction for high-purity cellulose production. Cellulose 26, 5913–5924 (2019). https://doi.org/10.1007/s10570-019-02516-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02516-8

Keywords

Navigation