Skip to main content
Log in

Cellulose nanofibres from bagasse using a high speed blender and acetylation as a pretreatment

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanofibres (CNFs) are attractive as a material because they can be produced on a large scale, they are renewable, biodegradable and have a wide range of applications. The high-speed blender is an efficient, simple mechanical technique for producing CNF from agricultural waste such as bagasse. The highly hydrophilic nature of CNF restricts its applicability for use in non-aqueous environments, such as those required for preparing composites and for filter applications. This research studied the relationship between blending time in a high-speed blender and the nanofibrillation process with acetylation as a pre-treatment, to develop a new method for creating high quality CNF. Non-acetylated and acetylated CNF was generated using blending times of 5–60 min, and their physical and chemical properties were compared. Fibrillation occurred quickly initially, and increased with increasing blending time although the aspect ratio decreased from 72 to 56 which was measured using a rheological approach while SEM was used to measure the decrease in diameter. Fibre cutting mechanisms were dominant. Acetylation as a pretreatment reduced energy consumption, improving CNF properties using shorter blending times. Apart from higher hydrophobicity, acetylated CNF had higher thermal stability and higher crystallinity and dispersed well in acetone. The combination of acetylation as a pre-treatment coupled with the simple high speed blender technique, has significant advantages for producing high quality CNF, which is less hydrophilic, and was produced with lower energy consumption.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023

    Article  CAS  Google Scholar 

  • Abraham E, Deepa B, Pothan L, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86:1468–1475

    Article  CAS  Google Scholar 

  • Andresen M, Johansson L-S, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677

    Article  CAS  Google Scholar 

  • Arbelaiz A, Fernandez B, Ramos J, Mondragon I (2006) Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: effect of treatments. Thermochim Acta 440:111–121

    Article  CAS  Google Scholar 

  • Ashori A, Babaee M, Jonoobi M, Hamzeh Y (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydr Polym 102:369–375

    Article  CAS  PubMed  Google Scholar 

  • Boufi S, Chaker A (2016) Easy production of cellulose nanofibrils from corn stalk by a conventional high speed blender. Ind Crop Prod 93:39–47

    Article  CAS  Google Scholar 

  • Boufi S, Gandini A (2015) Triticale crop residue: a cheap material for high performance nanofibrillated cellulose. RSC Adv 5:3141–3151

    Article  CAS  Google Scholar 

  • Božič M, Vivod V, Kavčič S, Leitgeb M, Kokol V (2015) New findings about the lipase acetylation of nanofibrillated cellulose using acetic anhydride as acyl donor. Carbohydr Polym 125:340–351

    Article  CAS  PubMed  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny J (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169

    Article  CAS  PubMed  Google Scholar 

  • Brown ME (2001) Introduction to thermal analysis: techniques and applications, vol 1. Springer, Pretoria

    Google Scholar 

  • Cerqueira DA, Meireles CdS (2007) Optimization of sugarcane bagasse cellulose acetylation. Carbohydr Polym 69:579–582

    Article  CAS  Google Scholar 

  • Chaker A, Mutjé P, Vilar MR, Boufi S (2014) Agriculture crop residues as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose 21:4247–4259

    Article  CAS  Google Scholar 

  • da Cruz SF, Pasquini D, Cerqueira DA, Prado VdS, de Assunção RMN (2000) Water flux through cellulose triacetate films produced from heterogeneous acetylation of sugar cane bagasse. J Membr Sci 177:225–231

    Article  Google Scholar 

  • De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631

    Article  CAS  Google Scholar 

  • Deepa B et al (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22:1075–1090

    Article  CAS  Google Scholar 

  • Derakhshandeh B, Kerekes R, Hatzikiriakos S, Bennington C (2011) Rheology of pulp fibre suspensions: a critical review. Chem Eng Sci 66:3460–3470

    Article  CAS  Google Scholar 

  • Duran N, Lemes AP, Duran M, Freer J, Baeza J (2011) A minireview of cellulose nanocrystals and its potential integration as co-product in bioethanol production. J Chil Chem Soc 56:672–677

    Article  CAS  Google Scholar 

  • Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48:3306–3316

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Goh KY, Ching YC, Chuah CH, Abdullah LC, Liou N-S (2016) Individualization of microfibrillated celluloses from oil palm empty fruit bunch: comparative studies between acid hydrolysis and ammonium persulfate oxidation. Cellulose 23:379–390

    Article  CAS  Google Scholar 

  • Goussé C, Chanzy H, Cerrada M, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575

    Article  CAS  Google Scholar 

  • Ho TTT, Abe K, Zimmermann T, Yano H (2015) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose 22:421–433

    Article  CAS  Google Scholar 

  • Hu F, Lin N, Chang PR, Huang J (2015) Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydr Polym 129:208–215

    Article  CAS  PubMed  Google Scholar 

  • Ibbett R, Gaddipati S, Hill S, Tucker G (2013) Structural reorganisation of cellulose fibrils in hydrothermally deconstructed lignocellulosic biomass and relationships with enzyme digestibility. Biotechnol Biofuel 6:33

    Article  CAS  Google Scholar 

  • Izadyar S, Rahimi M (2007) Use of beech wood sawdust for adsorption of textile dyes. Pak J Biol Sci 10:287–293

    Article  CAS  PubMed  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17:299–307

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866

    Article  CAS  Google Scholar 

  • Kim D-Y, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9:361–367

    Article  CAS  Google Scholar 

  • Kontturi KS et al (2017) Noncovalent surface modification of cellulose nanopapers by adsorption of polymers from aprotic solvents. Langmuir 33:5707–5712

    Article  CAS  PubMed  Google Scholar 

  • Li J et al (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Raj P, Husain FA, Varanasi S, Rainey T, Garnier G, Batchelor W (2015) Engineering cellulose nanofibre suspensions to control filtration resistance and sheet permeability. Cellulose 23:391–402

    Article  CAS  Google Scholar 

  • Li Q, Raj P, Husain FA, Varanasi S, Rainey T, Garnier G, Batchelor W (2016) Engineering cellulose nanofibre suspensions to control filtration resistance and sheet permeability. Cellulose 23:391–402

    Article  CAS  Google Scholar 

  • Liu C-F, Ren J-L, Xu F, Liu J-J, Sun J-X, Sun R-C (2006) Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse. J Agric Food Chem 54:5742–5748

    Article  CAS  Google Scholar 

  • Maiti S, Jayaramudu J, Das K, Reddy SM, Sadiku R, Ray SS, Liu D (2013) Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr Polym 98:562–567

    Article  CAS  PubMed  Google Scholar 

  • Mashkour M, Kimura T, Kimura F, Mashkour M, Tajvidi M (2013) Tunable self-assembly of cellulose nanowhiskers and polyvinyl alcohol chains induced by surface tension torque. Biomacromolecules 15:60–65

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka S, Kawamoto H, Saka S (2014) What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end. J Anal Appl Pyrol 106:138–146

    Article  CAS  Google Scholar 

  • Menon D, Anoop Anand K, Anitha V, Nair S (2010) Hydroxyapatite-reinforced polyamide 6, 6 nanocomposites through melt compounding. Int J Polym Mater 59:498–509

    Article  CAS  Google Scholar 

  • Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T (2000) Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16:5754–5760

    Article  CAS  Google Scholar 

  • Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234

    Article  CAS  Google Scholar 

  • Parija S, Nayak SK, Jena S (2007) Linear low density polyethylene/clay nanocomposites: influence of MAH-g-PE as compatibilizer loading on the physico-mechanical properties and crystallization characteristics. Polym-Plast Technol 46:183–189

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DKJBfB (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnnol Biofuels 3:10

    Article  CAS  Google Scholar 

  • Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392

    Article  CAS  Google Scholar 

  • Petroudy SRD, Syverud K, Chinga-Carrasco G, Ghasemain A, Resalati H (2014) Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohydr Polym 99:311–318

    Article  CAS  Google Scholar 

  • Rahimi M, Behrooz R (2011) Effect of cellulose characteristic and hydrolyze conditions on morphology and size of nanocrystal cellulose extracted from wheat straw. Int J Polym Mater 60:529–541

    Article  CAS  Google Scholar 

  • Rainey TJ, Doherty WO, Martinez DM, Brown RJ, Dickson A (2010) The effect of flocculants on the filtration of bagasse pulp pads. Tappi J 5:7–14

    Google Scholar 

  • Rainey TJ, Doherty WO, Martinez DM, Brown RJ, Kelson NA (2011) Pressure filtration of Australian bagasse pulp. Transp Porous Med 86:737–751

    Article  Google Scholar 

  • Rambabu N, Panthapulakkal S, Sain M, Dalai A (2016) Production of nanocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Ind Crop Prod 83:746–754

    Article  CAS  Google Scholar 

  • Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Shen W, Filonanko Y, Truong Y, Parker I, Brack N, Pigram P, Liesegang J (2000) Contact angle measurement and surface energetics of sized and unsized paper. Colloid Surf A 173:117–126

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111

    Article  CAS  Google Scholar 

  • Sun R, Fang J, Tomkinson J, Jones G (1999) Acetylation of wheat straw hemicelluloses in N,N-dimethylacetamide/LiCl solvent system. Ind Crop Prod 10:209–218

    Article  CAS  Google Scholar 

  • Sun J, Sun X, Zhao H, Sun R (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 84:331–339

    Article  CAS  Google Scholar 

  • Trache D, Hussin MH, Haafiz MM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786

    Article  CAS  PubMed  Google Scholar 

  • Uetani K, Yano H (2010) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12:348–353

    Article  CAS  PubMed  Google Scholar 

  • Varanasi S, Batchelor WJ (2013) Rapid preparation of cellulose nanofibre sheet. Cellulose 20:211–215

    Article  CAS  Google Scholar 

  • Varanasi S, He R, Batchelor W (2013) Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose 20:1885–1896

    Article  CAS  Google Scholar 

  • Xie H, King A, Kilpelainen I, Granstrom M, Argyropoulos DS (2007) Thorough chemical modification of wood-based lignocellulosic materials in ionic liquids. Biomacromol 8:3740–3748

    Article  CAS  Google Scholar 

  • Yeganeh F, Behrooz R, Rahimi M (2017) The effect of sulfuric acid and maleic acid on characteristics of nano-cellulose produced from waste office paper. Int J Nano Dimens 8:206–215

    CAS  Google Scholar 

  • Zhang L, Batchelor W, Varanasi S, Tsuzuki T, Wang X (2012) Effect of cellulose nanofiber dimensions on sheet forming through filtration. Cellulose 19:561–574

    Article  CAS  Google Scholar 

  • Zhang S, Sun G, He Y, Fu R, Gu Y, Chen S (2017) Preparation, characterization, and electrochromic properties of nanocellulose-based polyaniline. Nanocompos Films ACS Appl Mater Interfaces 9:16426–16434

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial contribution of a PhD scholarship from the QUT School of Chemistry, Physics and Mechanical Engineering and the support of the QUT Central Analytical Research Facility (CARF) at Queensland University of Technology for offering laboratories and equipment for our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Rainey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi Kord Sofla, M., Batchelor, W., Kosinkova, J. et al. Cellulose nanofibres from bagasse using a high speed blender and acetylation as a pretreatment. Cellulose 26, 4799–4814 (2019). https://doi.org/10.1007/s10570-019-02441-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02441-w

Keywords

Navigation