Skip to main content
Log in

Influence of the alkali treatment on the sorption and dielectric properties of woven jute fabric

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Woven jute fabric was treated with sodium hydroxide solution of different concentrations at room temperature, for different periods of time. After that, jute fabrics with gradually decreased content of hemicelluloses were obtained. The changes of the sorption properties (moisture sorption, water retention power and degree of fiber swelling) and dielectric properties (effective relative dielectric permeability, AC specific electrical conductivity and dielectric loss tangent) of alkali treated jute fabrics were investigated. After the alkali treatments, the degree of accessibility of the cell wall components to water vapor increased with increased severity of the alkali treatment. In parallel, the degree of fiber swelling and total water holding capacity of the fabrics were increased. The dielectric properties are very sensitive to fabric structural characteristics, chemical composition and its ability for moisture sorption. Thus, the obtained increase of the effective relative dielectric permeability after the alkali treatments can be attributed to the changes in the structural characteristics and decrease in the content of hemicelluloses, which further contributed to an increased ability for moisture sorption. The changes in the AC specific electrical conductivity can be explained by the fact that the hemicelluloses not only restrict the freedom of the water molecules to take part in the polarization process, they also change the structure in such a way that the mobility of the ions in the electric field is restricted. The values of dielectric loss tangent increased after the alkali treatments due to the increase in the number of polar groups.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahuja D, Kaushik A, Chauhan GS (2017) Fractionation and physicochemical characterization of lignin from waste jute bags: effect of process parameters on yield and thermal degradation. Int J Biol Macromol 97:403–410

    Article  CAS  PubMed  Google Scholar 

  • Asanovic KA, Cerovic DD, Mihailovic TV, Kostic MM, Reljic M (2015) Quality of clothing fabrics in terms of their comfort properties. Indian J Fibre Text 40:363–372

    CAS  Google Scholar 

  • Asanovic KA, Cerovic DD, Kostic MM, Maletic SB, Kramar AD (2018) Multipurpose nonwoven viscose/polypropylene fabrics: effect of fabric characteristics on sorption and dielectric properties. J Polym Sci Polm Phys 56:947–957

    Article  CAS  Google Scholar 

  • ASTDM D 2402-78 (1978) Standard test method for water retention of fibers (centrifuge method). In: Annual book of ASTM standards. American Society for Testing and Materials, Philadelphia

  • Bakri MKB, Jayamani E, Hamdan S, Rahman MdR, Soon KH, Kakar A (2016) Fundamental study on the effect of alkaline treatment on natural fibers structures and behaviors. ARPN J Eng Appl Sci 11:8759–8763

    Google Scholar 

  • Bal K, Kothari VK (2009) Measurement of dielectric properties of textile materials and their applications. Indian J Fibre Text 34:191–199

    CAS  Google Scholar 

  • Bal K, Kothari VK (2010) Permittivity of woven fabrics: a comparison of dielectric formulas for air-fiber mixture. IEEE Trans Dielectr Electr Ins 3:881–889

    Article  Google Scholar 

  • Bal K, Kothari VK (2014) Dielectric behavior of polyamide monofilament fibers containing moisture as measured in woven form. Fibers Polym 8:1745–1751

    Article  CAS  Google Scholar 

  • Baltazar-y-Jimenez A, Bismarck A (2007) Wetting behaviour, moisture up-take and electrokinetic properties of lignocellulosic fibers. Cellulose 14:115–127

    Article  CAS  Google Scholar 

  • Cerovic DD, Dojcilovic JR, Asanovic KA, Mihajlidi TA (2009) Dielectric investigation of some woven fabric. J Appl Phys 106:084101-1–084101-7

    Article  CAS  Google Scholar 

  • Cerovic DD, Asanovic KA, Maletic SB, Dojcilovic JR (2013) Comparative study of the electrical and structural properties of woven fabrics. Compos Part B Eng 49:65–70

    Article  CAS  Google Scholar 

  • Cerović D, Dojčilović J, Petronijević I, Popović D (2014) Comparative analysis of dielectric and structural characteristics of the samples based on polyethyleneterephtalate. Contemp Mater 5:42–50

    Google Scholar 

  • Cowie JMG, Arrighi V (2008) Polymers: chemistry and physics of modern materials. CRC Press, Boca Raton

    Google Scholar 

  • EN 1049-2:1993 (1993) Textiles—woven fabrics—construction—methods of analysis—part 2: determination of number of threads per unit length

  • Fraga AN, Frullloni E, Osa O, Kenny JM, Vázquez A (2006) Relationship between water absorption and dielectric behaviour of natural fibre composite materials. Polym Test 25:181–187

    Article  CAS  Google Scholar 

  • Garner W (1967) Textile laboratory manual, volume 5: fibres. Heywood Books, London, pp 52–113

    Google Scholar 

  • George G, Joseph K, Nagarajan ER, Jose ET, George KC (2013) Dielectric behaviour of PP/jute yarn commingled composites: effect of fiber content, chemical treatments, temperature and moisture. Compos Part A Appl Sci 47:12–21

    Article  CAS  Google Scholar 

  • Gümüşkaya E, Usta M, Balaban M (2007) Carbohydrate components and crystalline structure of organosolv hemp (Cannabis sativa L.) bast fibers pulp. Bioresour Technol 98:491–497

    Article  CAS  PubMed  Google Scholar 

  • Islam MS, Pickering KL, Foreman NJ (2011) Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. J Appl Polym Sci 119:3696–3707

    Article  CAS  Google Scholar 

  • ISO 3801:1977 (1977) Textiles—woven fabrics—determination of mass per unit length and mass per unit area, 1977

  • ISO 9237:1995 (1995) Textiles—determination of the permeability of fabrics to air

  • Kabir MF, Daud WM, Khalid KB, Sidek HAA (2001) Temperature dependence of the dielectric properties of rubber wood. Wood Fiber Sci 33:233–238

    CAS  Google Scholar 

  • Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866

    Article  CAS  Google Scholar 

  • Koblyakov A (1989) Laboratory practice in the study of textile materials. Mir Publishers, Moscow, pp 192–200

    Google Scholar 

  • Kostic M, Pejic B, Skundric P (2008) Quality of chemically modified hemp fibers. Bioresour Technol 99:94–99

    Article  CAS  PubMed  Google Scholar 

  • Kostic MM, Pejic BM, Asanovic KA, Aleksic VM, Skundric PD (2010) Effect of hemicelluloses and lignin on the sorption and electric properties of hemp fibers. Ind Crops Prod 32:169–174

    Article  CAS  Google Scholar 

  • Kothari VK, Bal K (2010) An infra-red heating based fast method of moisture content measurement and its application to measure blend proportion of polyester-viscose woven fabrics. J Eng Fiber Fabr 5:22–26

    CAS  Google Scholar 

  • Krishnan KB, Doraiswamy I, Chellamani KP (2005) Jute. In: Franck RR (ed) Bast and other plant fibers, 1st edn. Woodhead Publishing Limited and CRC Press LCR, Cambridge, pp 24–94

    Chapter  Google Scholar 

  • Lazić BD, Pejić BM, Kramar AD, Vukčević MM, Mihajlovski KR, Rusmirović JD, Kostić MM (2018) Influence of hemicelluloses and lignin content on structure and sorption properties of flax fibers (Linum usitatissimum L.). Cellulose 25:697–709

    Article  CAS  Google Scholar 

  • Markiewicz E, Paukszta D, Borysiak S (2009) Dielectric properties of lignocellulosic materials–polypropylene composites. Mater Sci Pol 27:581–594

    CAS  Google Scholar 

  • Mukherjee A, Ganguly PK, Sur D (1993) Structural mechanics of jute: the effects of hemicellulose or lignin removal. J Text Inst 84:348–353

    Article  CAS  Google Scholar 

  • Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234

    Article  CAS  Google Scholar 

  • Nurmi S, Hammi T, Demoulin B (2007) Protection against electrostatic and electromagnetic phenomena. In: Duquesne S, Magniez C, Camino G (eds) Multifunctional barriers for flexible structure. Springer, Berlin, pp 63–83

    Chapter  Google Scholar 

  • Pejic BM, Kostic MM, Skundric PD, Praskalo JZ (2008) The effects of hemicelluloses and lignin removal on water uptake behavior of hemp fibers. Bioresour Technol 99:7152–7159

    Article  CAS  PubMed  Google Scholar 

  • Pejic B, Vukcevic M, Kostic M, Skundric P (2009) Biosorption of heavy metal ions from aqueous solutions by short hemp fibers: effect of chemical composition. J Hazard Mater 164:146–153

    Article  CAS  PubMed  Google Scholar 

  • Rahman MS (2010) Jute—a versatile natural fibre. Cultivation, extraction and processing. In: Müssig J (ed) Industrial applications of natural fibers, 1st edn. Wiley, Bremen, pp 135–163

    Chapter  Google Scholar 

  • Ray D, Sarkar BK (2001) Characterization of alkali—treated jute fibers for physical and mechanical properties. J Appl Polym Sci 80:1013–1020

    Article  CAS  Google Scholar 

  • Ray PK, Das BK, Banerjee SK, Sen SK (1983) On the partial mercerization and crimp development in jute fiber. J Polym Sci Sect Polym Lett 21:263–270

    Article  CAS  Google Scholar 

  • Saukkonen E, Lyytikäinen K, Backfolk K, Maldzius R, Sidaravicius J, Lozovski T, Poskus A (2015) Effect of the carbohydrate composition of bleached kraft pulp on the dielectric and electrical properties of paper. Cellulose 22:1003–1017

    Article  CAS  Google Scholar 

  • Wang HM, Postle R, Kessler RW, Kessler W (2003) Removing pectin and lignin during chemical processing of hemp for textile applications. Text Res J 73:664–669

    Article  CAS  Google Scholar 

  • Zhang H, Ming R, Yang G, Li Y, Li Q, Shao H (2015) Influence of alkali treatment on flax fiber for use as reinforcements in polylactide stereocomplex composites. Polym Eng Sci 55:2553–2558

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Ministry of Education, Science and Technological Development of the Government of the Republic of Serbia for funding the study under the Projects (OI 172029 and OI 171029). The authors also thank Goran Dembovski, (Faculty of Technology and Metallurgy, University of “Ss. Cyril and Methodius”, Skopje, Macedonia) for air permeability analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Ivanovska or M. Kostic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2600 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanovska, A., Cerovic, D., Maletic, S. et al. Influence of the alkali treatment on the sorption and dielectric properties of woven jute fabric. Cellulose 26, 5133–5146 (2019). https://doi.org/10.1007/s10570-019-02421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02421-0

Keywords

Navigation