Skip to main content
Log in

Synthesis of lignocellulose-based composite hydrogel as a novel biosorbent for Cu2+ removal

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A lignocellulose-based composite hydrogel, as a novel biosorbent, was prepared for Cu2+ removal from wastewater. TEMPO-oxidized cellulose nanofibrils (TOCN) were dispersed in a 7 wt% NaOH/12 wt% urea aqueous solution at room temperature. Meanwhile, the dissolved cellulose was obtained in the same system at subzero temperature. The composite hydrogels were prepared by blending the dissolved cellulose solution, TOCN dispersion, and alkali lignin solution in an NaOH/urea aqueous solution. The composite hydrogel exhibits excellent adsorption capacity for heavy metals, which can be attributed to the synergistic effects of physical adsorption (porous 3D structure) and chemical adsorption (active sites: carboxyl and phenolic groups). The maximum amount of adsorbed Cu2+ onto composite hydrogel can reach 541 mg/g, which was achieved after 45 min. The adsorption behavior is well-described by the pseudo-second-order kinetics and the Freundlich model (R2 > 0.999). Furthermore, the composite hydrogel exhibits high-strength properties, indicating that the presence of TOCN and lignin contributes to mechanical improvements.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgments

We are grateful for financial support from National Key R&D Program of China (2017YFD0601005), as well as the National Natural Science Foundation of China (Grant No. 31870565), the Doctorate Fellowship Foundation of Nanjing Forestry University, the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX17_0845) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Lu, H., Yu, J. et al. Synthesis of lignocellulose-based composite hydrogel as a novel biosorbent for Cu2+ removal. Cellulose 25, 7315–7328 (2018). https://doi.org/10.1007/s10570-018-2077-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2077-8

Keywords

Navigation