Skip to main content
Log in

Formation of high strength double-network gels from cellulose nanofiber/polyacrylamide via NaOH gelation treatment

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Previously, we reported an efficient method to prepare tough hydrogels from cellulose nanofibers using an alkali treatment which had an nano-network structure. In this study, polyacrylamide/cellulose nanofiber (PAM/CNF) double-network (DN) gels were synthesized by simply using 15 wt% NaOH at room temperature. The compression properties and morphology of the gels were investigated. The main findings showed that the compressive stress of the PAM/CNF DN gel (CNF content of 5.7 wt%) was more than 15-fold higher than the pure PAM. When compared with the PAM/CNF gel prepared without alkali treatment, the mechanical properties of the PAM/CNF DN gel showed approximately 2-fold improvement. Analysis of this DN gel morphology further demonstrated that the CNF network (formed via 15 wt% NaOH treatment) was embedded in the PAM matrix, thereby increasing the strength of the hybrid gels. In summary, PAM/CNF DN gels with significantly improved mechanical properties could be prepared using a simple method, which provide great potential as bio-medical load-bearing gel materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe K, Yano H (2011) Formation of hydrogels from cellulose nanofibers. Carbohydr Polym 85(4):733–737

    Article  CAS  Google Scholar 

  • Abe K, Yano H (2012) Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose 19(6):1907–1912

    Article  CAS  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278

    Article  CAS  PubMed  Google Scholar 

  • Aouada FA, de Moura MR, Orts WJ, Mattoso LH (2011) Preparation and characterization of novel micro- and nanocomposite hydrogels containing cellulosic fibrils. J Agric Food Chem 59(17):9433–9442

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Zhu L, Zhao C, Wang Q, Zheng J (2013) A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol–gel polysaccharide. Adv Mater 25(30):4171–4176

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Li D, Yano H, Abe K (2014) Dissolution and gelation of α-chitin nanofibers using a simple naoh treatment at low temperatures. Cellulose 21(5):3339–3346

    Article  CAS  Google Scholar 

  • Chen C, Yano H, Li D, Abe K (2015a) Preparation of high-strength α-chitin nanofiber-based hydrogels under mild conditions. Cellulose 22(4):2543–2550

    Article  CAS  Google Scholar 

  • Chen Q, Chen H, Zhu L, Zheng J (2015b) Fundamentals of double network hydrogels. J Mater Chem B 3(18):3654–3676

    Article  CAS  Google Scholar 

  • Chen C, Wang H, Li S, Fang L, Li D (2017) Reinforcement of cellulose nanofibers in polyacrylamide gels. Cellulose 24:5487–5493

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    Article  CAS  Google Scholar 

  • Gong J (2010) Why are double network hydrogels so tough? Soft Matter 6(12):2583–2590

    Article  CAS  Google Scholar 

  • Gong J, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15(14):1155–1158

    Article  CAS  Google Scholar 

  • Hebeish A, Farag S, Sharaf S, Shaheen TI (2014) Development of cellulose nanowhisker-polyacrylamide copolymer as a highly functional precursor in the synthesis of nanometal particles for conductive textiles. Cellulose 21(4):3055–3071

    Article  CAS  Google Scholar 

  • Jiang X, Zhang Y, Wang J, Wu G (2018) Significant reinforcement of polypropylene by synergistic compatibilization of nano-cellulose whiskers and POE. J Forestry Eng 3(01):89–96

    Google Scholar 

  • Li J, Suo Z, Vlassak J (2014) Stiff, strong, and tough hydrogels with good chemical stability. J Mater Chem B 2(39):6708–6713

    Article  CAS  Google Scholar 

  • Li M, Wu Q, Song K, Lee S, Yan Q, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3(5):821–832

    Article  CAS  Google Scholar 

  • Li N, Chen W, Chen G, Tian J (2017) Rapid shape memory tempo-oxidized cellulose nanofibers/polyacrylamide/gelatin hydrogels with enhanced mechanical strength. Carbohydr Polym 171:77–84

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Zhou G, Chu L, Liu Y, Liu C, Luo S et al (2016) Efficient removal of heavy metal ions with edta functionalized chitosan/polyacrylamide double network hydrogel. ACS Sustain Chem Eng 5(1):843–851

    Article  CAS  Google Scholar 

  • Mahfoudhi N, Boufi S (2016) Poly(acrylic acid-co-acrylamide)/cellulose nanofibrils nanocomposite hydrogels: effects of CNFs content on the hydrogel properties. Cellulose 23(6):3691–3701

    Article  CAS  Google Scholar 

  • Nair S, Zhu J, Deng Y, Ragauskas A (2014) Hydrogels prepared from cross-linked nanofibrillated cellulose. ACS Sustain Chem Eng 2(4):772–780

    Article  CAS  Google Scholar 

  • Peng Y, Gardner DJ, Han Y (2015) Characterization of mechanical and morphological properties of cellulose reinforced polyamide 6 composites. Cellulose 22(5):3199–3215

    Article  CAS  Google Scholar 

  • Sampath U-G, Ching Y, Chuah C-H et al (2017) Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel. Cellulose 24(5):2215–2228

    Article  CAS  Google Scholar 

  • Song L, Wang Z, Lamm ME, Yuan L, Tang C (2017) Supramolecular polymer nanocomposites derived from plant oils and cellulose nanocrystals. Macromolecules 50(19):7475–7483

    Article  CAS  Google Scholar 

  • Sun J, Zhao X, Illeperuma W, Chaudhuri O, Oh KH, Mooney DJ et al (2012) Highly stretchable and tough hydrogels. Nature 489(7414):133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H (2013) Double network hydrogels with extremely high toughness and their applications. Korea-Aust Rheol J 25(4):185–196

    Article  Google Scholar 

  • Yang J, Han C-R, Duan J-F et al (2013) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals–polyacrylamide nanocomposite hydrogels. Cellulose 20(1):227–237

    Article  CAS  Google Scholar 

  • Yuan N, Xu L, Wang H, Fu Y, Zhang Z, Liu L et al (2016) Dual physically cross-linked double network hydrogels with high mechanical strength, fatigue resistance, notch-insensitivity, and self-healing properties. ACS Appl Mater Interfaces 8(49):34034–34044

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Li X, Gao S et al (2017) Understanding mechanical characteristics of cellulose nanocrystals reinforced PHEMA nanocomposite hydrogel: in aqueous cyclic test. Cellulose 24(5):2095–2110

    Article  CAS  Google Scholar 

  • Zhou C, Wu Q (2011) A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloids Surf B 84(1):155–162

    Article  CAS  Google Scholar 

  • Zhou C, Wu Q, Yue Y, Zhang Q (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 353(1):116

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, He H, Li MC, Song K, Cheng HN, Wu Q (2016) Morphological influence of cellulose nanoparticles from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions. Carbohydr Polym 153:445–454

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Special Budget “Smart-Materials” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, the Natural Science Foundation of Jiangsu Province (CN) (No. BK20170925), the National Natural Science Foundation of China (NSFC 31670555), and Innovation Fund for Young Scholars of Nanjing Forestry University (CX 2017001) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuchu Chen or Hiroyuki Yano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Li, D., Abe, K. et al. Formation of high strength double-network gels from cellulose nanofiber/polyacrylamide via NaOH gelation treatment. Cellulose 25, 5089–5097 (2018). https://doi.org/10.1007/s10570-018-1938-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1938-5

Keywords

Navigation