Skip to main content
Log in

Carbon black enhanced conductivity, carbon yield and dye adsorption of sustainable cellulose derived carbon nanofibers

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A new carbon nanofibrous mat with necklace-like structures have been prepared by carbonization of cellulose/carbon black (CB) nanofibers through electrospinning of cellulose acetate/CB blend solution followed by deacetylation. The effect of carbon black on the thermal stability of the precursor and morphology of the CNFs were investigated using thermogravimetric analysis, field emission scanning electron microscopy (FE-SEM) and Raman spectroscopy. The FE-SEM images showed that cellulose derived CNFs form matrix for accomplishing necklace-like fibers containing spherical CB nanoparticles with diameter between 30 and 60 nm after heating of cellulose/CB nanofibers. It is demonstrated that the incorporation of CB particles increases the electrical conductivity from 1.4 to 16 mS and carbon yield from 12 to 30%. Carbon nanofibers based on cellulose/CB was evaluated as a suitable adsorbent for removal of methylene blue (MB) from water. The final dye removal was found to be 97% at the initial MB concentration of 20 mg L−1. This study suggests a new carbon nanofiber structure that will be potentially useful for energy applications and water treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bansal RC (2005) Activated carbon adsorption. CRC Press, Boca Raton

    Book  Google Scholar 

  • Brennan LJ, Byrne MT, Bari M, Gun YK (2011) Carbon nanomaterials for dye-sensitized solar cell applications: a bright future. Adv Energy Mater 1:472–485

    Article  CAS  Google Scholar 

  • Chae HG, Choi YH, Minus ML, Kumar S (2009) Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber. Compos Sci Technol 69:406–413

    Article  CAS  Google Scholar 

  • Chand S (2000) Carbon fibers for composites. J Mater Sci 35:1303–1313

    Article  CAS  Google Scholar 

  • Deng L, Young RJ, Kinloch IA, Abdelkader AM, Holmes SM, De Haro-Del R, David A, Eichhorn SJ (2013a) Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl Mater Interfaces 5:9983–9990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng L, Young RJ, Kinloch IA, Zhu Y, Eichhorn SJ (2013b) Carbon nanofibres produced from electrospun cellulose nanofibres. Carbon 58:66–75

    Article  CAS  Google Scholar 

  • Dumanli AG, Windle AH (2012) Carbon fibres from cellulosic precursors: a review. J Mater Sci 47:4236–4250

    Article  CAS  Google Scholar 

  • Ekrami E, Dadashian F, Soleimani M (2014) Waste cotton fibers based activated carbon: optimization of process and product characterization. Fibers Polym 15:1855–1864

    Article  CAS  Google Scholar 

  • Frank E, Hermanutz F, Buchmeiser MR (2012) Carbon fibers: precursors, manufacturing, and properties. Macromol Mater Eng 297:493–501

    Article  CAS  Google Scholar 

  • Frey MW (2008) Electrospinning cellulose and cellulose derivatives. Polym Rev 48:378–391

    Article  CAS  Google Scholar 

  • Gaminian H, Montazer M (2017) Decorating silver nanoparticles on electrospun cellulose nanofibers through a facile method by dopamine and ultraviolet irradiation. Cellulose 24:3179–3190

    Article  CAS  Google Scholar 

  • Guo Q, Zhou X, Li X, Chen S, Seema A (2009) Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes. J Mater Chem 19:2810–2816

    Article  CAS  Google Scholar 

  • Gupta VK (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manage 90:2313–2342

    Article  CAS  PubMed  Google Scholar 

  • Hwang J, Muth J, Ghosh T (2006) Electrical and mechanical properties of carbon-black-filled, electrospun nanocomposite fiber webs. J Appl Polym Sci 104:2410–2417

    Article  CAS  Google Scholar 

  • Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commerically available carbon black material. Carbon 33:1561–1565

    Article  CAS  Google Scholar 

  • Jazaeri E, Zhang L, Wang X, Tsuzuki T (2011) Fabrication of carbon nanofiber by pyrolysis of freeze-dried cellulose nanofiber. Cellulose 18:1481–1485

    Article  CAS  Google Scholar 

  • Kilzer FJ, Broido A (1965) Speculations on the nature of cellulose pyrolysis. Pyrodynamics 2:151–163

    CAS  Google Scholar 

  • Kuzmenko V, Naboka O, Gatenholm P, Enoksson P (2014) Ammonium chloride promoted synthesis of carbon nanofibers from electrospun cellulose acetate. Carbon N Y 67:694–703

    Article  CAS  Google Scholar 

  • Kuzmenko V, Naboka O, Haque N, Staaf H, Goransson G, Gatenholm P, Peter Enoksson P (2015) Capacitive effects of nitrogen doping on cellulose-derived carbon nanofibers. Mater Chem Phys 160:59–65

    Article  CAS  Google Scholar 

  • Lau AC, Furlong DN, Healy TW, Grieser F (1986) The electrokinetic properties of carbon black and graphitized carbon black aqueous colloids. Colloids Surf 18:93–104

    Article  CAS  Google Scholar 

  • Liu Y, Qin W, Wang Q, Liu R, Liu H (2015) Glassy carbon nanofibers from electrospun cellulose nanofiber. J Mater Sci 50:563–569

    Article  CAS  Google Scholar 

  • Park SJ (2014) Carbon fibers. Springer, Berlin

    Google Scholar 

  • Patil SA, Chigome S, Hägerhäll C, Torto N, Gorton L (2013) Bioresource technology electrospun carbon nanofibers from polyacrylonitrile blended with activated or graphitized carbonaceous materials for improving anodic bioelectrocatalysis. Bioresour Technol 132:121–126

    Article  CAS  PubMed  Google Scholar 

  • Peter KT, Vargo JD, Rupasinghe TP, De Jesus A, Tivanski AV, Sander EA, Myung NV, Cwiertny DM (2016) Synthesis, optimization, and performance demonstration of electrospun carbon nanofiber–carbon nanotube composite sorbents for point-of-use water treatment. ACS Appl Mater Interfaces 8:11431–11440

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez K, Gatenholm P, Renneckar S (2012) Electrospinning cellulosic nanofibers for biomedical applications: structure and in vitro biocompatibility. Cellulose 19:1583–1598

    Article  CAS  Google Scholar 

  • Soares BG, Calheiros LF, Barra GMO (2016) Effect of double percolation on the electrical properties and electromagnetic interference shielding effectiveness of carbon-black- loaded polystyrene/ethylene vinyl acetate copolymer blends. J Appl Polym Sci 133:1–10

    Article  CAS  Google Scholar 

  • Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265–271

    Article  CAS  Google Scholar 

  • Sun J, Chang S, Lee S, Lee Y (2010) Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification. Carbon 48:2573–2581

    Article  CAS  Google Scholar 

  • Suzuki M (1994) Activated carbon fiber: fundamentals and applications. Carbon 32:577–586

    Article  CAS  Google Scholar 

  • Tai Z, Yan X, Lang J, Xue Q (2012) Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets. J Power Sources 199:373–378

    Article  CAS  Google Scholar 

  • Tarasova E, Byzova A, Savest N, Viirsalu M, Gudkova V, Märtson T, Krumme A (2014) Influence of preparation process on morphology and conductivity of carbon black-based electrospun nanofibers. Fuller Nanotub Carbon Nanostruct 23:695–700

    Article  CAS  Google Scholar 

  • Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14:563–575

    Article  CAS  Google Scholar 

  • Xie H, Yang Q, Sun X, Yang J, Huang Y (2006) Gas sensor arrays based on polymer-carbon black to detect organic vapors at low concentration. Sens Actuators B Chem 113:887–891

    Article  CAS  Google Scholar 

  • Yu Y, Gu L, Wang C, Dhanabalan A, Aken PV, Maier J (2009) Encapsulation of Sn@ carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew Chem Int Ed 48:6485–6489

    Article  CAS  Google Scholar 

  • Zhu L, Lu Y, Wang Y, Zhang L, Wang W (2012) Preparation and characterization of dopamine-decorated hydrophilic carbon black. Appl Surf Sci 258:5387–5393

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Montazer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaminian, H., Montazer, M. Carbon black enhanced conductivity, carbon yield and dye adsorption of sustainable cellulose derived carbon nanofibers. Cellulose 25, 5227–5240 (2018). https://doi.org/10.1007/s10570-018-1929-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1929-6

Keywords

Navigation