Skip to main content

Advertisement

Log in

Surface wetting behavior of nanocellulose-based composite films

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Thin nanocellulose-based composite films (approximately 25 μm) were made with cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs), and Zn(2-methylimidazolate anion)2 (ZM) modified CNFs for potential use in energy storage devices such as battery separators. The film morphology and surface wettability were studied in comparison with a commercial Polypropylene-Polyethylene-Polypropylene (PEP) battery separator film. Five different models were used to determine the dispersive and polar components of surface free energy (SFE) for the films and wetting envelopes for various films were constructed. Varied morphology from mixed CNC and CNF composite and increased film porosity coupled with reduced O–H groups on the surface of modified CNFs led to increased surface wettability of CNC–CNF and ZM–CNF films, respectively. All cellulose-based films showed better surface wetting behavior compared with that of the PEP film. The Owens–Wendt–Rabel–Kaelble (OWRK) method was suitable for calculating SFE components of the composite films. The total SFE of the CNC–CNF and ZM–CNF films varied from 42.55 to 53.87 mJ/m2 in comparison with 20.19 mJ/m2 for the PEP film. The constructed wetting-envelopes can be used to predict the wetting behavior of different solvents on the composite films for target electrochemical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bedian L, Villalba-Rodríguez AM, Hernández-Vargas G, Parra-Saldivar R, Iqbal HMN (2017) Bio-based materials with novel characteristics for tissue engineering applications: a review. Int J Biol Macromol 98:837–846

    Article  CAS  PubMed  Google Scholar 

  • Cappelletti G, Ardizzone S, Meroni D, Soliveri G, Ceotto M, Biaggi C, Benaglia M, Raimondi L (2013) Wettability of bare and fluorinated silanes: a combined approach based on surface free energy evaluations and dipole moment calculations. J Colloid Interface Sci 389(1):284–291

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Bonaccurso E (2014) Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops. Phys Rev E 90(2):022401

    Article  CAS  Google Scholar 

  • Chibowski E, Perea-Carpio R (2002) Problems of contact angle and solid surface free energy determination. Adv Colloid Interface Sci 98(2):245–264

    Article  CAS  PubMed  Google Scholar 

  • Chitpong N, Husson SM (2017) Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters. J Membr Sci 523:418–429

    Article  CAS  Google Scholar 

  • Cole KC, Thomas Y, Pellerin E, Dumoulin MM, Paroli RM (1996) New approach to quantitative analysis of two-component polymer systems by infrared spectroscopy. Appl Spectrosc 50(6):774–780

    Article  CAS  Google Scholar 

  • Costa SV, Pingel P, Janietz S, Nogueira AF (2016) Inverted organic solar cells using nanocellulose as substrate. J Appl Polym Sci 133(28):43679

    Article  CAS  Google Scholar 

  • Dias VM, Kuznetsova A, Jo Tedim, Yaremchenko AA, Zheludkevich ML, Is Portugal, Evtuguin DV (2015) Silica-based nanocoating doped by layered double hydroxides to enhance the paperboard barrier properties. WJNSE 5(4):14

    Article  CAS  Google Scholar 

  • Dieter K, Friederike K, Sebastian M, Tom L, Mikael A, Derek G, Annie D (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  • Fowkes FM (1972) Donor-acceptor interactions at interfaces. J Adhes 4(2):155–159

    Article  CAS  Google Scholar 

  • Gardner DJ (2007) Application of the Lifshitz-van der Waals acid-base approach to determine wood surface tension components. Wood Fiber Sci 28(4):422–428

    Google Scholar 

  • Gindl M, Sinn G, Gindl W, Reiterer A, Tschegg S (2001) A comparison of different methods to calculate the surface free energy of wood using contact angle measurements. Colloids Surf A 181(1–3):279–287

    Article  CAS  Google Scholar 

  • Good RJ (1992) Contact angle, wetting, and adhesion: a critical review. J Adhes Sci Technol 6(12):1269–1302

    Article  CAS  Google Scholar 

  • Han J, Zhou C, Wu Y, Liu F, Wu Q (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromol 14(5):1529–1540

    Article  CAS  Google Scholar 

  • Hou L, Udangawa WMRN, Pochiraju A, Dong W, Zheng Y, Linhardt RJ, Simmons TJ (2016) Synthesis of Heparin-immobilized, magnetically addressable cellulose nanofibers for biomedical applications. ACS Biomat Sci Eng 2(11):1905–1913

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  CAS  PubMed  Google Scholar 

  • Jian M, Liu B, Liu R, Qu J, Wang H, Zhang X (2015) Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Adv 5(60):48433–48441

    Article  CAS  Google Scholar 

  • Jung YH, Chang T-H, Zhang H, Yao C, Zheng Q, Yang VW, Mi H, Kim M, Cho SJ, Park D-W, Jiang H, Lee J, Qiu Y, Zhou W, Cai Z, Gong S, Ma Z (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170

    Article  PubMed  PubMed Central  Google Scholar 

  • Kabza KG, Gestwicki JE, McGrath JL (2000) Contact angle goniometry as a tool for surface tension measurements of solids, using zisman plot method: a physical chemistry experiment. J Chem Educ 77(1):63

    Article  CAS  Google Scholar 

  • Kim J-H, Kim J-H, Choi E-S, Yu HK, Kim JH, Wu Q, Chun S-J, Lee S-Y, Lee S-Y (2013) Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries. J Power Sources 242:533–540

    Article  CAS  Google Scholar 

  • Kwok DY, Neumann AW (2000) Contact angle interpretation in terms of solid surface tension. Colloids Surf A 161(1):31–48

    Article  CAS  Google Scholar 

  • Law K-Y, Zhao H (2016) Determination of solid surface tension by contact angle. In: Surface wetting: characterization, contact angle, and fundamentals. Springer, Cham, pp 135–148

  • Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117(22):6681–6692

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014a) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7(12):3857–3886

    Article  CAS  Google Scholar 

  • Lee HV, Hamid SBA, Zain SK (2014b) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 2014:1–20

    Google Scholar 

  • Li D, Neumann AW (1993) Equilibrium of capillary systems with an elastic liquid-vapor interface. Langmuir 9(1):50–54

    Article  CAS  Google Scholar 

  • Lindström T, Aulin C, Naderi A, Ankerfors M (2014) Microfibrillated cellulose. Encycl Polym Sci Technol. https://doi.org/10.1002/0471440264.pst614

    Article  Google Scholar 

  • Naderi A (2017) Nanofibrillated cellulose: properties reinvestigated. Cellulose 24(5):1933–1945

    Article  CAS  Google Scholar 

  • Naderi A, Lindstrom T, Erlandsson J, Sundstrom J, Flodberg G (2016) A comparative study of the properties of three nanofibrillated cellulose systems that have been produced at about the same energy consumption levels in the mechanical delamination step. Nordic Pulp Pap Res J 31(3):364–371

    Article  CAS  Google Scholar 

  • Najafabadi E, Zhou YH, Knauer KA, Fuentes-Hernandez C, Kippelen B (2014) Efficient organic light-emitting diodes fabricated on cellulose nanocrystal substrates. Appl Phys Lett 105(6):063305

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Pignon F (2016) Current progress in rheology of cellulose nanofibril suspensions. Biomacromol 17(7):2311–2320

    Article  CAS  Google Scholar 

  • O’Connor TF, Zaretski AV, Savagatrup S, Printz AD, Wilkes CD, Diaz MI, Sawyer EJ, Lipomi DJ (2016) Wearable organic solar cells with high cyclic bending stability: materials selection criteria. Sol Energy Mater Sol Cells 144:438–444

    Article  CAS  Google Scholar 

  • Perez-Madrigal MM, Edo MG, Aleman C (2016) Powering the future: application of cellulose-based materials for supercapacitors. Green Chem 18(22):5930–5956

    Article  CAS  Google Scholar 

  • Peršin Z, Stana-Kleinschek K, Sfiligoj-Smole M, Kre T, Ribitsch V (2004) Determining the surface free energy of cellulose materials with the powder contact angle method. Text Res J 74(1):55–62

    Article  Google Scholar 

  • Rupp F, Gittens RA, Scheideler L, Marmur A, Boyan BD, Schwartz Z, Geis-Gerstorfer J (2014) A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomater 10(7):2894–2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19(5):383–396

    Article  CAS  Google Scholar 

  • Savva A, Petraki F, Elefteriou P, Sygellou L, Voigt M, Giannouli M, Kennou S, Nelson J, Bradley DDC, Brabec CJ, Choulis SA (2013) The effect of organic and metal oxide interfacial layers on the performance of inverted organic photovoltaics. Adv Energy Mater 3(3):391–398

    Article  CAS  Google Scholar 

  • Sun X, Wu Q, Ren S, Lei T (2015) Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods. Cellulose 22(2):1123–1133

    Article  CAS  Google Scholar 

  • Sun X, Wu Q, Zhang J, Qing Y, Wu Y, Lee S (2017) Rheology, curing temperature and mechanical performance of oil well cement: combined effect of cellulose nanofibers and graphene nano-platelets. Mater Des 114:92–101

    Article  CAS  Google Scholar 

  • Sun X, Wu Q, Zhang X, Ren S, Lei T, Li W, Xu G, Zhang Q (2018) Nanocellulose films with combined cellulose nanofibers and nanocrystals: tailored thermal, optical and mechanical properties. Cellulose 25(2):1103–1115

    Article  CAS  Google Scholar 

  • Van Oss CJ (2006) Interfacial forces in aqueous media. CRC Press, Boca Raton

    Google Scholar 

  • Wang S, Zhang Y, Abidi N, Cabrales L (2009) Wettability and surface free energy of graphene films. Langmuir 25(18):11078–11081

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Giese RF Jr, van Oss CJ (1995) Evaluation of the Lifshitz-van der Waals/acid-base approach to determine surface tension components. Langmuir 11(1):379–382

    Article  CAS  Google Scholar 

  • Xu Z, Liu Q, Ling J (1995) An Evaluation of the van Oss-Chaudhury-good equation and Neumann’s Equation of state approach with mercury substrate. Langmuir 11(3):1044–1046

    Article  CAS  Google Scholar 

  • Xu X, Zhou J, Jiang L, Lubineau G, Ng T, Ooi BS, Liao H-Y, Shen C, Chen L, Zhu JY (2016) Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. Nanoscale 8(24):12294–12306

    Article  CAS  PubMed  Google Scholar 

  • Yu B-C, Park K, Jang J-H, Goodenough JB (2016) Cellulose-based porous membrane for suppressing li dendrite formation in lithium-sulfur battery. ACS Energy Lett 1(3):633–637

    Article  CAS  Google Scholar 

  • Zhang J, Yue L, Kong Q, Liu Z, Zhou X, Zhang C, Xu Q, Zhang B, Ding G, Qin B, Duan Y, Wang Q, Yao J, Cui G, Chen L (2014) Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci Rep 4:3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Xu C, Cheng W, Zhang Q, Nie W (2015) Effects of oxygen element and oxygen-containing functional groups on surface wettability of coal dust with various metamorphic degrees based on XPS experiment. J Anal Methods Chem 20:158

    Google Scholar 

Download references

Acknowledgments

This collaborative study was carried out with support from LSU Economic Development Assistantship program, Louisiana Board of Regents [LEQSF(2017-18)-RD-A-01; LEQSF(2016-17)-ENH-TR-01, LEQSF(2015-17)-RD-B-01], Nanjing Forestry University (Nanjing, China), and Korea Institute of Forest Science (Seoul, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglin Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10570_2018_1927_MOESM1_ESM.docx

Supplementary data associated with this article can be found—contact angle measurements and surface free energy components (mJ/m2) of common solvents (PDF) (DOCX 1819 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Mei, C., French, A.D. et al. Surface wetting behavior of nanocellulose-based composite films. Cellulose 25, 5071–5087 (2018). https://doi.org/10.1007/s10570-018-1927-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1927-8

Keywords

Navigation