Skip to main content

Advertisement

Log in

Conductive regenerated cellulose film as counter electrode for efficient dye-sensitized solar cells

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose-based material for novel and functional application, has attracted more attention, due to its degradable, renewable and green nature. In this research, a conductive regenerated cellulose film (CRCF) was developed as an effective counter electrode (CE) for preparing dye-sensitized solar cells (DSSCs). The CRCF presented desirable surface morphologies and structure and low resistance, and the resultant DSSC showed a high power conversion efficiency of 8.11%, which was comparable to that of traditional platinum-CE DSSC. Our discovery opens a new avenue for promoting cellulose application, as well as fabrication of cost-effective and eco-friendly DSSCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chaoumead A, Park HD, Joo BH, Kwak DJ, Park MW, Sung YM (2013) Structural and electrical properties of titanium-doped indium oxide films deposited by RF sputtering. Energy Procedia 34:572–581

    Article  CAS  Google Scholar 

  • Chen L, Guo C, Zhang Q, Lei Y, Xie J, Ee S, Guai G, Song Q, Li C (2013) Graphene quantum-dot-doped polypyrrole counter electrode for high-performance dye-sensitized solar cells. ACS Appl Mater Interfaces 5:2047–2051

    Article  CAS  PubMed  Google Scholar 

  • Cheng D, An X, Zhang J, Tian X, He Z, Wen Y, Ni Y (2017) Facile preparation of regenerated cellulose film from cotton linter using organic electrolyte solution (OES). Cellulose 24(4):1631–1639

    Article  CAS  Google Scholar 

  • Dai L, Long Z, Chen J, An X, Cheng D, Khan A, Ni Y (2017) Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties. ACS Appl Mater Interfaces 9(6):5477–5485

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking J, McGehee M, Wågberg L, Cui Y (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6:513–518

    Article  CAS  Google Scholar 

  • Khondoker MAH, Yang SY, Mun SC, Kim J (2012) Flexible and conductive ITO electrode made on cellulose film by spin-coating. Synth Met 162:1972–1976

    Article  CAS  Google Scholar 

  • Lee J, Lim D, Yang K, Choi W (2011) Influence of different plasma treatments on electrical and optical properties on sputtered AZO and ITO films. J Cryst Growth 326:50–57

    Article  CAS  Google Scholar 

  • Lee CP, Lai KY, Lin CA, Li CT, Ho KC, Wu CI, Laue SP, He JH (2017) A paper-based electrode using a graphene dot/PEDOT: PSS composite for flexible solar cells. Nano Energy 36:260–267

    Article  CAS  Google Scholar 

  • Li J, Ma X, Duan C, Liu Y, Zhang H, Ni Y (2016) Enhanced removal of hemicelluloses from cellulosic fibers by poly (ethylene glycol) during alkali treatment. Cellulose 23:231–238

    Article  CAS  Google Scholar 

  • Li C, Lee CP, Chiu I, Ramamurthy V, Huang Y, Chen T, Pang H, Lin J, Ho K (2017) Hierarchical TiO 1.1 Se 0.9-wrapped carbon cloth as the TCO-free and Pt-free counter electrode for iodide-based and cobalt-based dye-sensitized solar cells. J Mater Chem A 5:14079–14091

    Article  CAS  Google Scholar 

  • Liu X, Pang J, Zhang X, Wu Y, Sun R (2013) Regenerated cellulose film with enhanced tensile strength prepared with ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc). Cellulose 20:1391–1399

    Article  CAS  Google Scholar 

  • Liu Y, Sun B, Li J, Cheng D, An X, Yang B, He Z, Lutes R, Khan A, Ni Y (2018) An aqueous dispersion of carbon fibers and expanded graphite stabilized from the addition of cellulose nanocrystals to produce highly conductive cellulose composites. ACS Sustain Chem Eng 6:3291–3298

    Article  CAS  Google Scholar 

  • Ma X, Yang X, Zheng X, Chen L, Huang L, Cao S, Akinosho H (2015) Toward a further understanding of hydrothermally pretreated holocellulose and isolated pseudo lignin. Cellulose 22:1687–1696

    Article  CAS  Google Scholar 

  • Mi H, Liu CH, Chang TH, Seo JH, Zhang H, Sang JC, Nader B, Ma Z, Yao C, Cai Z, Gong S (2016) Characterizations of biodegradable epoxy-coated cellulose nanofibrils (CNF) thin film for flexible microwave applications. Cellulose 23:1–7

    Article  CAS  Google Scholar 

  • Morfa AJ, Rödlmeier T, Jürgensen N, Stolz S, Hernandez-Sosa G (2016) Comparison of biodegradable substrates for printed organic electronic devices. Cellulose 23:1–9

    Article  CAS  Google Scholar 

  • Tang Y, He Z, Mosseler JA, Ni Y (2014) Production of highly electro-conductive cellulosic paper via surface coating of carbon nanotube/graphene oxide nanocomposites using nanocrystalline cellulose as a binder. Cellulose 21:4569–4581

    Article  CAS  Google Scholar 

  • Tian C, Zheng L, Miao Q, Cao C, Ni Y (2014) Improving the reactivity of kraft-based dissolving pulp for viscose rayon production by mechanical treatments. Cellulose 21:3647–3654

    Article  CAS  Google Scholar 

  • Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crops Prod 35:92–97

    Article  CAS  Google Scholar 

  • Wang H, Hu M, Fei G, Wang L, Fan J (2015) Preparation and characterization of polypyrrole/cellulose fiber conductive composites doped with cationic polyacrylate of different charge density. Cellulose 22:3305–3319

    Article  CAS  Google Scholar 

  • Weerasinghe HC, Huang F, Cheng YB (2013) Fabrication of flexible dye sensitized solar cells on plastic substrates. Nano Energy 2:174–189

    Article  CAS  Google Scholar 

  • Wu R, Wang X, Li F, Li H, Wang Y (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol 100:2569–2572

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G, Lin Y, Xie Y, Wei Y (2017) Counter electrodes in dye-sensitized solar cells. Chem Soc Rev 46:5975–5982

    Article  CAS  PubMed  Google Scholar 

  • Yun S, Hagfeldt A, Ma T (2014) Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv Mater 26:6210–6237

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Zhu S, Jia Z, Parvinian S, Li Y, Vaaland O, Hu L, Li T (2015) Anomalous scaling law of strength and toughness of cellulose nanopaper. Proc Natl Acad Sci USA 112:8971–8976

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported from the National Natural Science Foundation of China (21674123, 31700520), New Century Excellent Talents in Fujian Province University (KLa17009A), International cooperation project of Fujian Agriculture and Forestry University (KXGH17003), and the Distinguished Young Scholars of Fujian Agriculture and Forestry University (xjq201729).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihui Chen or Xinhua Ouyang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yang, H., Huang, K. et al. Conductive regenerated cellulose film as counter electrode for efficient dye-sensitized solar cells. Cellulose 25, 5113–5122 (2018). https://doi.org/10.1007/s10570-018-1913-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1913-1

Keywords

Navigation