Skip to main content
Log in

Cellulose–silk fibroin hydrogels prepared in a lithium bromide aqueous solution

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Here, we present a new process for the preparation of cellulose–silk fibroin hydrogels using a concentrated lithium bromide (LiBr) aqueous solution. After mixing, the solutions of cellulose and silk fibroin that had each been dissolved separately in aqueous LiBr, the cellulose forms a gel as the solution cools to approximately 70°C, and silk fibroin is regenerated via treatment in methanol. Three grades of cellulose–silk fibroin hydrogels are prepared by controlling the amounts of cellulose and silk fibroin. The gels have highly porous, three-dimensional networks composed of long, interconnected fibrils. Through X-ray diffraction and ATR-FTIR analysis we show that the dissolution-regeneration of cellulose and silk fibroin induces a structural change in the crystal structure of cellulose II and silk II. While the porosity and swelling ratio of cellulose–silk fibroin gels is significantly reduced with the increased silk fibroin content, all the gels show high water uptake. The enzymatic degradation rates of cellulose–silk fibroin gels obviously reflect differences in the silk fibroin content, and cell adhesion and growth on cellulose–silk fibroin gels is enhanced with increased silk fibroin content. These cellulose–silk fibroin gels could provide novel properties that would be useful for biomaterial matrix applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arai T, Freddi G, Innocenti R, Tsukuda M (2003) Biodegradation of Bombyx mori silk fibroin fibers and films. J Appl Polym Sci 91:2383–2390

    Article  Google Scholar 

  • Asakura T, Yao J, Yamane T, Umemura K, Ulrich AS (2002) Heterogeneous structure of silk fibers from Bombyx mori resolved by 13C solid-state NMR spectroscopy. J Am Chem Soc 124:8794–8795

    Article  CAS  Google Scholar 

  • Bhattacharya M, Malinen MM, Lauren P, Lou YR, Kuisma S, Kanninen L, Lille M, Corlu A, GuGuen-Guillouzo C, Ikkala O, Laukkanen A, Urtti A, Yliperttula M (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release 164:291–298

    Article  CAS  Google Scholar 

  • Braun FN, Viney C (2003) Modelling self assembly of natural silk solutions. Int J Biol Macromol 32:3–5

    Article  Google Scholar 

  • Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    Article  Google Scholar 

  • Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53

    Article  CAS  Google Scholar 

  • Cho HJ, Yoo YJ, Kim JW, Park YH, Bae DG, Um IC (2012) Effect of molecular weight and storage time on the wet- and electro-spinning of regenerated silk fibroin. Polym Degrad Stabil 97:1060–1066

    Article  CAS  Google Scholar 

  • Feng L, Chen Z (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq 142:1–5

    Article  Google Scholar 

  • Feng Y, Li X, Li M, Ye D, Zhang Q, You R, Xu W (2017) Facile preparation of biocompatible silk fibroin/cellulose nanocomposite films with high mechanical performance. ACS Sustain Chem Eng 5:6227–6236

    Article  CAS  Google Scholar 

  • Freddi G, Romanò M, Massafra MR, Tsukada M (1995) Silk fibroin/cellulose blend films: preparation, structure, and physical properties. J Appl Polym Sci 56:1537–1545

    Article  CAS  Google Scholar 

  • Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46

    Article  CAS  Google Scholar 

  • He SJ, Valluzzi R, Gido SP (1999) Silk I structure in Bombyx mori silk foams. Int J Biol Macromol 24:187–195

    Article  CAS  Google Scholar 

  • Hirano S, Nakahira T, Zhang M, Nakagawa M, Yoshikawa M, Midorikawa T (2002) Wet-spun blend biofibers of cellulose–silk fibroin and cellulose–chitin–silk fibroin. Carbohydr Polym 47:121–124

    Article  CAS  Google Scholar 

  • Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, Volloch V, Kaplan DL, Altman GH (2005) In vitro degradation of silk fibroin. Biomaterials 26:3385–3393

    Article  CAS  Google Scholar 

  • Huber T, Müssig J, Curnow O, Pang S, Bickerton S, Staiger MP (2012) A critical review of all-cellulose composites. J Mater Sci 47:1171–1186

    Article  CAS  Google Scholar 

  • Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromol 5:786–792

    Article  CAS  Google Scholar 

  • Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL (2005) Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26:2775–2785

    Article  CAS  Google Scholar 

  • Kim HJ, Kim UJ, Kim HS, Li C, Wada M, Leisk GG, Kaplan DL (2008) Bone tissue engineering with premineralized silk scaffolds. Bone 42:1226–1234

    Article  CAS  Google Scholar 

  • Li M, Ogiso M, Minoura N (2003) Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials 24:357–365

    Article  CAS  Google Scholar 

  • Lindman B, Karlstrom G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    Article  CAS  Google Scholar 

  • Liu BH, Yeh HY, Lin YC, Wang MH, Chen DC, Lee BH, Hsu SH (2013) Spheroid formation and enhanced cardiomyogenic potential of adipose-derived stem cells grown on chitosan. BioRes Open Access 2:28–39

    Article  CAS  Google Scholar 

  • Lu Q, Hu X, Wang X, Kluge JA, Lu S, Cebe P, Kaplan DL (2010) Water-insoluble silk films with silk I structure. Acta Biomater 6:1380–1387

    Article  CAS  Google Scholar 

  • Marsano E, Canetti M, Conio G, Corsini P, Freddi G (2007) Fibers based on cellulose–silk fibroin blend. J Appl Polym Sci 104:2187–2196

    Article  CAS  Google Scholar 

  • Marsano E, Corsini P, Canetti M, Freddi G (2008) Regenerated cellulose–silk fibroin blends fibers. Int J Biol Macromol 43:106–114

    Article  CAS  Google Scholar 

  • Mita K, Ichimura S, James TC (1994) Highly repetitive structure and its organization of the silk fibroin gene. J Mol Evol 38:583–592

    Article  CAS  Google Scholar 

  • Shang S, Zhu L, Fan J (2011) Physical properties of silk fibroin/cellulose blend films regenerated from the hydrophilic ionic liquid. Carbohydr Polym 86:462–468

    Article  CAS  Google Scholar 

  • Sionkowska A (2011) Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci 36:1254–1276

    Article  CAS  Google Scholar 

  • Tanaka K, Kajiyama N, Ishikura K, Waga S, Kikuchi A, Ohtomo K, Takagi T, Mizuno S (1999) Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. BBA Protein Struct Mol 1432:92–103

    Article  CAS  Google Scholar 

  • Teramoto H, Miyazawa M (2005) Molecular orientation behavior of silk sericin film as revealed by ATR infrared spectroscopy. Biomacromol 6:2049–2057

    Article  CAS  Google Scholar 

  • Yang YJ, Shin JM, Kang TH, Kimura S, Wada M, Kim UJ (2014) Cellulose dissolution in aqueous lithium bromide solution. Cellulose 21:1175–1181

    Article  CAS  Google Scholar 

  • Yao Y, Mukuze KS, Zhang Y, Wang H (2014) Rheological behavior of cellulose/silk fibroin blend solutions with ionic liquid as solvent. Cellulose 21:675–684

    Article  CAS  Google Scholar 

  • Zhou CZ, Confalonieri F, Medina N, Zivanovic Y, Esnault C, Yang T, Jacquet M, Janin J, Duguet M, Perasso R, Li ZG (2000) Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res 28:2413–2419

    Article  CAS  Google Scholar 

  • Zhou J, Chang C, Zhang R, Zhang L (2007) Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol Biosci 7:804–809

    Article  CAS  Google Scholar 

  • Zhou L, Wang Q, Wen J, Chen X, Shao Z (2013) Preparation and characterization of transparent silk fibroin/cellulose blend films. Polymer 54:5035–5042

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from Kyung Hee University in 2017 (KHU-20171193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ung-Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.J., Yang, Y.J., Oh, H.J. et al. Cellulose–silk fibroin hydrogels prepared in a lithium bromide aqueous solution. Cellulose 24, 5079–5088 (2017). https://doi.org/10.1007/s10570-017-1491-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1491-7

Keywords

Navigation