Skip to main content

Advertisement

Log in

Poly(lactic acid)-based biocomposites reinforced with modified cellulose nanocrystals

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This work investigates reinforcing poly(lactic acid) (PLA) nanocomposites using triazine derivative-grafted cellulose nanocrystals (CNCs). A hydrophobic triazine derivative was synthesized and applied to modify CNCs to improve their thermal stability and diminish the hydrophilicity of the nanoparticles. CNCs before and after modification were used to reinforce PLA nanocomposites by a hot compression process. The results of thermogravimetric analysis indicated that the initial thermal decomposition temperature of modified nanocrystals was improved by approximately 100 °C compared to the original CNCs. That is, the thermal stability of modified cellulose nanocrystals was improved due to the shielding effect of CNCs by a hydrophobic aliphatic amine layer on the surface of the nanoparticles. The results of dynamic contact angle measurements revealed a decrease of hydrophilicity of the modified CNCs. The results from scanning electron microscopy and a UV–Vis spectrophotometer revealed that the compatibility between the modified nanocrystals and the PLA was improved. Finally, the results of tensile tests indicated a significant improvement in terms of breaking strength and elongation at the break point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abraham E, Kam D, Nevo Y, Slattegard R, Rivkin A, Lapidot S, Shoseyov O (2016) Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites. ACS Appl Mater Interfaces 8(41):28086–28095

    Article  CAS  Google Scholar 

  • Arrieta MP, Fortunati E, Dominici F, Rayon E, Lopez J, Kenny JM (2014) Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr Polym 107(8):16–24

    Article  CAS  Google Scholar 

  • Azouz KB, Ramires EC, Fonteyne WV, Kissi NE, Dufresne A (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. Acs Macro Lett 1(1):236–240

    Article  Google Scholar 

  • Bagheriasl D, Carreau PJ, Dubois C, Riedl B (2015) Properties of polypropylene and polypropylene/poly(ethylene-co-vinyl alcohol) blend/CNC nanocomposites. Compos Sci Technol 117:357–363

    Article  CAS  Google Scholar 

  • Bagheriasl D, Carreau PJ, Riedl B, Dubois C, Hamad WY (2016) Shear rheology of polylactide (PLA)–cellulose nanocrystal (CNC) nanocomposites. Cellulose 23:1885–1897

    Article  CAS  Google Scholar 

  • Braun B, Dorgan JR (2009) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10:334–341

    Article  CAS  Google Scholar 

  • Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779

    Article  CAS  Google Scholar 

  • Fortunati E, Luzi F, Puglia D, Petrucci R, Kenny JM, Torre L (2015) Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: innovative reuse of coastal plant. Ind Crops Prod 67:439–447

    Article  CAS  Google Scholar 

  • Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolucules 12(7):2456–2465

    Article  CAS  Google Scholar 

  • Goffin AL, Habibi Y, Raquez JM, Dubois P (2012) Polyester-grafted cellulose nanowhiskers: a new approach for tuning the microstructure of immiscible polyester blends. ACS Appl Mater Interfaces 4:3364–3371

    Article  CAS  Google Scholar 

  • Habibi Y, Goffin AL, Schiltz N, Duquesne E, Philippe Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerisation. J Mater Chem 18(41):5002–5010

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Haque MM, Puglia D, Fortunati E, Pracella M (2017) Effect of reactive functionalization on properties and degradability of poly(lactic acid)/poly(viny acetate) nanocomposites with cellulose nanocrystals. React Funct Polym 110:1–9

    Article  CAS  Google Scholar 

  • Huan S, Bai L, Liu G, Han G (2015) Electrospun nanofibrous composites of polystyrene and cellulose nanocrystals: manufacture and characterization. Rsc Adv 5:50756–50766

    Article  CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70(12):1742–1747

    Article  CAS  Google Scholar 

  • Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr Polym 123:105–114

    Article  CAS  Google Scholar 

  • Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos A 42:1509–1514

    Article  Google Scholar 

  • Lin N, Dufresne A (2013) Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules 46(14):5570–5583

    Article  CAS  Google Scholar 

  • Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4(11):3274–3294

    Article  CAS  Google Scholar 

  • Liu Y, Li Y, Yang G, Zheng XT, Zhou SB (2015) Multi-stimuli responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals. ACS Appl Mater Interfaces 7(7):4118–4126

    Article  CAS  Google Scholar 

  • Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6:2732–2739

    Article  CAS  Google Scholar 

  • Lonnberg H, Larsson K, Lindstrom T, Hult A, Malmstrom E (2011) Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites-influence of the graft length on the mechanical properties. ACS Appl Mater Interfaces 3:1426–1433

    Article  Google Scholar 

  • Mi HY, Jing X, Peng J, Salick MR, Peng XF, Turng LS (2014) Poly(ε-caprolactone) (PCL)/cellulose nano-crystal (CNC) nanocomposites and foams. Cellulose 21:2727–2741

    Article  CAS  Google Scholar 

  • Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14):8280–8286

    Article  CAS  Google Scholar 

  • Morelli CL, Belgacem N, Branciforti MC, Salon MCB, Bras J, Bretas RES (2016) Nanocomposites of PBAT and cellulose nanocrystals modified by in situ polymerization and melt extrusion. Polym Eng Sci 56(12):1339–1348

    Article  CAS  Google Scholar 

  • Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69(7):1293–1297

    Article  CAS  Google Scholar 

  • Pearlman WM, Banks CK (1948) Substituted Chlorodiamino-s-triazines1. J Am Chem Soc 70(11):3726–3728

    Article  CAS  Google Scholar 

  • Pracella M, Haque MM, Puglia D (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bionanocomposites by means of reactive functionalization and blending with PVAc. Polymer 55:3720–3728

    Article  CAS  Google Scholar 

  • Rasal RM, Hirt DE (2009) Toughness decrease of PLA-PHBHHx blend films upon surface-confined photopolymerization. J Biomed Mater Res Part A 88(4):1079–1086

    Article  Google Scholar 

  • Rasal RM, Janorkar A, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35(3):338–356

    Article  CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677

    Article  CAS  Google Scholar 

  • Roy D, Guthrie JT, Perrier S (2005) One-pot hyperbranched polymer synthesis mediated by reversible addition fragmentation chain transfer (RAFT) polymerization. Macromolecules 38:10363–10372

    Article  CAS  Google Scholar 

  • Salmieri S, Islam F, Khan RA, Hossain F, Ibrahim HMM, Miao C, Hamad WY, Lacroix M (2014) Antimicrobial nanocomposite films made of poly(lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications: part A-effect of nisin release on the inactivation of Listeria monocytogenes in ham. Cellulose 21:1837–1850

    Article  CAS  Google Scholar 

  • Shimizu M, Fukuzumi H, Saito T, Isogai A (2013) Preparation and characterization of TEMPO-oxidized cellulose nanofibrils with ammonium carboxylate groups. Int J Biol Macromol 59:99–104

    Article  CAS  Google Scholar 

  • Shimizu M, Saito T, Fukuzumi H, Isogai A (2014a) Hydrophobic, ductile, and transparent nanocellulose films with quaternary alkylammonium carboxylates on nanofibril surfaces. Biomacromolecules 15:4320–4325

    Article  CAS  Google Scholar 

  • Shimizu M, Saito T, Isogai A (2014b) Bulky quaternary alkylammonium counterions enhance the nanodispersibility of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose in diverse solvents. Biomacromolecules 15:1904–1909

    Article  CAS  Google Scholar 

  • Singhvi M, Gokhale D (2013) Biomass to biodegradable polymer (PLA). Rsc Adv 3:13558–13568

    Article  CAS  Google Scholar 

  • Sobkowicz MJ, Braun B, Dorgan JR (2009) Decorating in green: surface esterification of carbon and cellulosic nanoparticles. Green Chem 11:680–682

    Article  CAS  Google Scholar 

  • Stroganov V, Al-Hussein M, Sommer J, Janke A, Zakharchenko S, Ionov L (2015) Reversible thermosensitive biodegradable polymeric actuators based on confined crystallization. Nano Lett 15(3):1786–1790

    Article  CAS  Google Scholar 

  • Wang C, Huang CL, Chen YC, Hwang GL, Tsai SJ (2008) Carbon nanocapsules-reinforced syndiotactic polystyrene nanocomposites: crystallization and morphological features. Polymer 49:5564–5574

    Article  CAS  Google Scholar 

  • Yee YY, Ching YC, Rozali S, Hashim NA, Singh R (2016) Preparation and characterization of poly(lactic acid)-based composite reinforced with oil palm empty fruit bunch fiber and nanosilica. BioResources 11(1):2269–2286

    Article  CAS  Google Scholar 

  • Yin YY, Tian XZ, Jiang X, Wang HB, Gao WD (2016) Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Carbohydr Polym 142:206–212

    Article  CAS  Google Scholar 

  • Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos Part A 41(4):499–505

    Article  Google Scholar 

  • Zhang NC, Yu A, Liang A, Zhang RB, Xue F, Ding E (2013) Preparation of SiC whisker and application in reinforce of polystyrene resin composite materials. J Appl Polym Sci 130:579–586

    Article  CAS  Google Scholar 

  • Zhang CM, Salick MR, Cordie TM, Ellingham TK, Dan Y, Turng LS (2015) Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mater Sci Eng C 49(39):463–471

    Article  CAS  Google Scholar 

  • Zoppe JO, Peresin MS, Habibi Y, Venditti RA, Rojas OJ (2009) Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals. ACS Appl Mater Interfaces 9:1996–2004

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (Grant No. 31570578 and 31270632), the Fundamental Research Funds for the Central Universities (Grant No. JUSRP51622A), the Graduate Student Innovation Plan of the Jiangsu Province of China (KYLX16_0790) and the fund supported by China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Jiang or Hongbo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Zhao, L., Jiang, X. et al. Poly(lactic acid)-based biocomposites reinforced with modified cellulose nanocrystals. Cellulose 24, 4773–4784 (2017). https://doi.org/10.1007/s10570-017-1455-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1455-y

Keywords

Navigation