Skip to main content
Log in

High-performance carbon nanofiber coated cellulose filter paper for electromagnetic interference shielding

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A high-performance electromagnetic interference (EMI) shielding material based on carbon nanofiber (CNF) and cellulose filter (CF) paper has been fabricated by a cost-efficient and convenient dip-coating method. The EMI shielding performance of the CF papers with micron level thickness tolerance (2.5–12.7 µm) have been explored by considering the microstructure, serviceability, electrical conductivity, and number of dip-coating cycles. Field emission scanning electron microscopy of the surface and edge of the composites support the good electrical conductivity, which showed distinct increment in electrical conductivity from 6.6 × 10−7 to 0.85 S/cm. The number of dip-coating cycles have a significant impact on electrical conductivity, and this has also been studied and inferred after alteration of dipping cycles. The electromagnetic shielding efficiency of CNF-coated CF paper exhibits 24.6 dB with only 25 dip coating cycles. Moreover, from commercially viable points of view, extensive study has been executed to investigate CNF-coated CF papers in the simulated ageing environments viz. water, thermal ageing, and thermo-degradability over a wide range of temperature (ambient to 600 °C). All the environmental factors have been simulated on a laboratory scale. The CNF-coated CF papers possess significantly higher mechanical properties than pure CF paper. This type of conductive CNF-coated CF paper is a promising candidate to be used as highly flexible, lightweight, and cost-efficient EMI shielding material in advanced multifunctional application areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbas SM et al. (2015) Stretchable and highly conductive carbon nanotube-graphene hybrid yarns for wearable systems. In: Proceedings of the 10th EAI international conference on body area networks, 2015. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), pp 308–309. doi:10.4108/eai.28-9-2015.2261421

  • Abbas SM, Sevimli O, Heimlich MC, Esselle KP, Kimiaghalam B, Foroughi J, Safaei F (2013) Microwave characterization of carbon nanotube yarns for UWB medical wireless body area networks. IEEE Trans Microw Theory Tech 61:3625–3631. doi:10.1109/TMTT.2013.2280120

    Article  Google Scholar 

  • Al-Saleh MH, Saadeh WH, Sundararaj U (2013) EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60:146–156. doi:10.1016/j.carbon.2013.04.008

    Article  CAS  Google Scholar 

  • Anderson RE et al (2010) Multifunctional single-walled carbon nanotube–cellulose composite paper. J Mater Chem 20:2400–2407. doi:10.1039/B924260K

    Article  CAS  Google Scholar 

  • Bardet R, Reverdy C, Belgacem N, Leirset I, Syverud K, Bardet M, Bras J (2015) Substitution of nanoclay in high gas barrier films of cellulose nanofibrils with cellulose nanocrystals and thermal treatment. Cellulose 22:1227–1241. doi:10.1007/s10570-015-0547-9

    Article  CAS  Google Scholar 

  • Basavaraja C, Jo E, Kim BS, Huh DS (2011) Electromagnetic interference shielding of cellulose triacetate/multiwalled carbon nanotube composite films. Polym Compos 32:438–444. doi:10.1002/pc.21062

    Article  CAS  Google Scholar 

  • Bhawal P, Ganguly S, Das TK, Mondal S, Das N (2017) Mechanically robust conductive carbon clusters confined ethylene methyl acrylate–based flexible composites for superior shielding effectiveness. Polym Adv Technol. doi:10.1002/pat.4092

    Google Scholar 

  • Chen WH, Tu YJ, Sheen HK (2010) Impact of dilute acid pretreatment on the structure of bagasse for bioethanol production. Int J Energy Res 34:265–274. doi:10.1002/er.1566

    Article  CAS  Google Scholar 

  • Chen C et al (2015) Facile approach to the fabrication of 3D electroconductive nanofibers with controlled size and conductivity templated by bacterial cellulose. Cellulose 22:3929–3939. doi:10.1007/s10570-015-0770-4

    Article  CAS  Google Scholar 

  • Das NC, Maiti S (2008) Electromagnetic interference shielding of carbon nanotube/ethylene vinyl acetate composites. J Mater Sci 43:1920–1925. doi:10.1007/s10853-008-2458-8

    Article  CAS  Google Scholar 

  • Deng L, Young RJ, Kinloch IA, Abdelkader AM, Holmes SM, De Haro-Del Rio DA, Eichhorn SJ (2013) Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl Mater Interfaces 5:9983–9990. doi:10.1021/am403622v

    Article  CAS  Google Scholar 

  • Diouri N, Baitoul M, Maaza M (2013) Effect of wrapped carbon nanotubes on optical properties, morphology, and thermal stability of electrospun poly (vinyl alcohol) composite nanofibers. J Nanomater 2013:10. doi:10.1155/2013/949108

    Article  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi:10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588. doi:10.1007/s10570-012-9833-y

    Article  CAS  Google Scholar 

  • Fugetsu B, Sano E, Sunada M, Sambongi Y, Shibuya T, Wang X, Hiraki T (2008) Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper. Carbon 46:1256–1258. doi:10.1016/j.carbon.2008.04.024

    Article  CAS  Google Scholar 

  • Ghosh P, Siddhanta SK, Chakrabarti A (1999) Characterization of poly(vinyl pyrrolidone) modified polyaniline prepared in stable aqueous medium. Eur Polymer J 35:699–710. doi:10.1016/S0014-3057(98)00157-8

    Article  CAS  Google Scholar 

  • Gouda M, Hebeish A, Aljaafari A (2016) New route for development of electromagnetic shielding based on cellulosic nanofibers. J Ind Text 46:1598–1615. doi:10.1177/1528083715627166

    Article  Google Scholar 

  • Hoang AS (2011) Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyurethane composite films. Adv Nat Sci Nanosci Nanotechnol 2:025007. doi:10.1088/2043-6262/2/2/025007

    Article  Google Scholar 

  • Huang Y et al (2007) The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45:1614–1621. doi:10.1016/j.carbon.2007.04.016

    Article  CAS  Google Scholar 

  • Huang H-D, Liu C-Y, Zhou D, Jiang X, Zhong G-J, Yan D-X, Li Z-M (2015) Cellulose composite aerogel for highly efficient electromagnetic interference shielding. J Mater Chem A 3:4983–4991. doi:10.1039/C4TA05998K

    Article  CAS  Google Scholar 

  • Imai M, Akiyama K, Tanaka T, Sano E (2010) Highly strong and conductive carbon nanotube/cellulose composite paper. Compos Sci Technol 70:1564–1570. doi:10.1016/j.compscitech.2010.05.023

    Article  CAS  Google Scholar 

  • Kang Y-R, Li Y-L, Hou F, Wen Y-Y, Su D (2012) Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage. Nanoscale 4:3248–3253. doi:10.1039/C2NR30318C

    Article  CAS  Google Scholar 

  • Karim MZ, Chowdhury ZZ, Hamid SBA, Ali ME (2014) Statistical optimization for acid hydrolysis of microcrystalline cellulose and its physiochemical characterization by using metal ion catalyst. Materials 7:6982–6999. doi:10.3390/ma7106982

    Article  Google Scholar 

  • Kim D-Y, Nishiyama Y, Wada M, Kuga S (2001) High-yield carbonization of cellulose by sulfuric acid impregnation. Cellulose 8:29–33. doi:10.1023/A:1016621103245

    Article  CAS  Google Scholar 

  • Lee T-W, Han M, Lee S-E, Jeong YG (2016a) Electrically conductive and strong cellulose-based composite fibers reinforced with multiwalled carbon nanotube containing multiple hydrogen bonding moiety. Compos Sci Technol 123:57–64. doi:10.1016/j.compscitech.2015.12.006

    Article  CAS  Google Scholar 

  • Lee T-W, Lee S-E, Jeong YG (2016b) Carbon nanotube/cellulose papers with high performance in electric heating and electromagnetic interference shielding. Compos Sci Technol 131:77–87. doi:10.1016/j.compscitech.2016.06.003

    Article  CAS  Google Scholar 

  • Lee T-W, Lee S-E, Jeong YG (2016c) Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers. ACS Appl Mater Interfaces 8:13123–13132. doi:10.1021/acsami.6b02218

    Article  CAS  Google Scholar 

  • Li N et al (2006) Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites. Nano Lett 6:1141–1145. doi:10.1021/nl0602589

    Article  CAS  Google Scholar 

  • Li Y, Samad YA, Taha T, Cai G, Fu S-Y, Liao K (2016) Highly flexible strain sensor from tissue paper for wearable electronics. ACS Sustain Chem Eng 4:4288–4295. doi:10.1021/acssuschemeng.6b00783

    Article  CAS  Google Scholar 

  • Lin X, Shen X, Zheng Q, Yousefi N, Ye L, Mai Y-W, Kim J-K (2012) Fabrication of highly-aligned,conductive, and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano 6:10708–10719. doi:10.1021/nn303904z

    Article  CAS  Google Scholar 

  • Liu H-G, Lee Y-I, Qin W-P, Jang K, Feng X-S (2004) Studies on composites formed by europium complexes with different ligands and polyvinylpyrrolidone. Mater Lett 58:1677–1682. doi:10.1016/j.matlet.2003.11.006

    Article  CAS  Google Scholar 

  • Liu Z et al (2007) Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45:821–827. doi:10.1016/j.carbon.2006.11.020

    Article  CAS  Google Scholar 

  • Liu S, Zhang L, Zhou J, Wu R (2008) Structure and properties of cellulose/Fe2O3 nanocomposite fibers spun via an effective pathway. J Phys Chem C 112:4538–4544. doi:10.1021/jp711431h

    Article  CAS  Google Scholar 

  • Liu S, Ke D, Zeng J, Zhou J, Peng T, Zhang L (2011) Construction of inorganic nanoparticles by micro-nano-porous structure of cellulose matrix. Cellulose 18:945–956. doi:10.1007/s10570-011-9556-5

    Article  CAS  Google Scholar 

  • Liu L, Niu Z, Zhang L, Zhou W, Chen X, Xie S (2014) Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv Mater 26:4855–4862. doi:10.1002/adma.201401513

    Article  CAS  Google Scholar 

  • Luong ND et al (2011) Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. J Mater Chem 21:13991–13998. doi:10.1039/C1JM12134K

    Article  Google Scholar 

  • Lv P, Wei A, Wang Y, Li D, Zhang J, Lucia LA, Wei Q (2016) Copper nanoparticles-sputtered bacterial cellulose nanocomposites displaying enhanced electromagnetic shielding, thermal, conduction, and mechanical properties. Cellulose 23:3117–3127. doi:10.1007/s10570-016-1030-y

    Article  CAS  Google Scholar 

  • Ma H, Zeng J, Realff ML, Kumar S, Schiraldi DA (2003) Processing, structure, and properties of fibers from polyester/carbon nanofiber composites. Compos Sci Technol 63:1617–1628. doi:10.1016/S0266-3538(03)00071-X

    Article  CAS  Google Scholar 

  • Mao H, Wu X, Qian X, An X (2014) Conductivity and flame retardancy of polyaniline-deposited functional cellulosic paper doped with organic sulfonic acids. Cellulose 21:697–704. doi:10.1007/s10570-013-0122-1

    Article  CAS  Google Scholar 

  • Mao H, Liu X, Qian X, An X (2015) Preparation and dedoping-resistant effect of self-doped polyaniline/cellulose fibers (SPANI/CF) hybrid. Cellulose 22:2641–2650. doi:10.1007/s10570-015-0689-9

    Article  CAS  Google Scholar 

  • Marins JA, Soares BG, Dahmouche K, Ribeiro SJL, Barud H, Bonemer D (2011) Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose 18:1285–1294. doi:10.1007/s10570-011-9565-4

    Article  CAS  Google Scholar 

  • Marins JA, Soares BG, Fraga M, Müller D, Barra GMO (2014) Self-supported bacterial cellulose polyaniline conducting membrane as electromagnetic interference shielding material: effect of the oxidizing agent. Cellulose 21:1409–1418. doi:10.1007/s10570-014-0191-9

    Article  CAS  Google Scholar 

  • Mondal S, Ganguly S, Rahaman M, Aldalbahi A, Chaki TK, Khastgir D, Das NC (2016) A strategy to achieve enhanced electromagnetic interference shielding at low concentration with a new generation of conductive carbon black in a chlorinated polyethylene elastomeric matrix. Phys Chem Chem Phys 18:24591–24599. doi:10.1039/C6CP04274K

    Article  CAS  Google Scholar 

  • Mondal S, Ganguly S, Das P, Khastgir D, Das NC (2017a) Low percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon based ethylene methyl acrylate nanocomposites. Compos B Eng 119:41–56. doi:10.1016/j.compositesb.2017.03.022

    Article  CAS  Google Scholar 

  • Mondal S, Nayak L, Rahaman M, Aldalbahi A, Chaki TK, Khastgir D, Das NC (2017b) An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites. Compos B Eng 109:155–169. doi:10.1016/j.compositesb.2016.10.049

    Article  CAS  Google Scholar 

  • Müller D, Mandelli JS, Marins JA, Soares BG, Porto LM, Rambo CR, Barra GMO (2012) Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose 19:1645–1654. doi:10.1007/s10570-012-9754-9

    Article  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. doi:10.1021/ja0257319

    Article  CAS  Google Scholar 

  • Penttilä A, Sievänen J, Torvinen K, Ojanperä K, Ketoja JA (2013) Filler-nanocellulose substrate for printed electronics: experiments and model approach to structure and conductivity. Cellulose 20:1413–1424. doi:10.1007/s10570-013-9883-9

    Article  Google Scholar 

  • Pinto G, Maaroufi AK, Benavente R, Perena JM (2011) Electrical conductivity of urea–formaldehyde–cellulose composites loaded with copper. Polym Compos 32:193–198. doi:10.1002/pc.21032

    Article  CAS  Google Scholar 

  • Rußler A, Sakakibara K, Rosenau T (2011) Cellulose as matrix component of conducting films. Cellulose 18:937–944. doi:10.1007/s10570-011-9555-6

    Article  Google Scholar 

  • Sasso C et al (2011) Polypyrrole (PPy) chemical synthesis with xylan in aqueous medium and production of highly conducting PPy/nanofibrillated cellulose films and coatings. Cellulose 18:1455–1467. doi:10.1007/s10570-011-9583-2

    Article  CAS  Google Scholar 

  • Shi Z, Phillips GO, Yang G (2013) Nanocellulose electroconductive composites. Nanoscale 5:3194–3201. doi:10.1039/C3NR00408B

    Article  CAS  Google Scholar 

  • Soni B, Mahmoud B (2015) Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohyd Polym 134:581–589. doi:10.1016/j.carbpol.2015.08.031

    Article  CAS  Google Scholar 

  • Tang S, Baker GA, Ravula S, Jones JE, Zhao H (2012) PEG-functionalized ionic liquids for cellulose dissolution and saccharification. Green Chem 14:2922–2932. doi:10.1039/C2GC35631G

    Article  CAS  Google Scholar 

  • Theilmann P, Yun D-J, Asbeck P, Park S-H (2013) Superior electromagnetic interference shielding and dielectric properties of carbon nanotube composites through the use of high aspect ratio CNTs and three-roll milling. Org Electron 14:1531–1537. doi:10.1016/j.orgel.2013.02.029

    Article  CAS  Google Scholar 

  • Wan Y-J, Zhu P-L, Yu S-H, Sun R, Wong C-P, Liao W-H (2017) Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy. Carbon 122:74–81. doi:10.1016/j.carbon.2017.06.042

    Article  CAS  Google Scholar 

  • Wang H, Leaukosol N, He Z, Fei G, Si C, Ni Y (2013) Microstructure, distribution and properties of conductive polypyrrole/cellulose fiber composites. Cellulose 20:1587–1601. doi:10.1007/s10570-013-9945-z

    Article  CAS  Google Scholar 

  • Wang H, Hu M, Fei G, Wang L, Fan J (2015) Preparation and characterization of polypyrrole/cellulose fiber conductive composites doped with cationic polyacrylate of different charge density. Cellulose 22:3305–3319. doi:10.1007/s10570-015-0718-8

    Article  CAS  Google Scholar 

  • Weng Z, Su Y, Wang DW, Li F, Du J, Cheng HM (2011) Graphene–cellulose paper flexible supercapacitors. Adv Energy Mater 1:917–922. doi:10.1002/aenm.201100312

    Article  CAS  Google Scholar 

  • Yan X, Tai Z, Chen J, Xue Q (2011) Fabrication of carbon nanofiber–polyaniline composite flexible paper for supercapacitor. Nanoscale 3:212–216. doi:10.1039/C0NR00470G

    Article  CAS  Google Scholar 

  • Yang S, Lozano K, Lomeli A, Foltz HD, Jones R (2005) Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites. Compos A Appl Sci Manuf 36:691–697. doi:10.1016/j.compositesa.2004.07.009

    Article  Google Scholar 

  • Yang Y, Gupta MC, Dudley KL (2007) Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites. Nanotechnology 18:345701. doi:10.1088/0957-4484/18/34/345701

    Article  Google Scholar 

  • Yang C, Zang L, Qiu J, Sakai E, Wu X, Iwase Y (2014) Nano-cladding of natural microcrystalline cellulose with conducting polymer: preparation, characterization, and application in energy storage. RSC Adv 4:40345–40351. doi:10.1039/C4RA07389D

    Article  CAS  Google Scholar 

  • Yang X, Zhu W, Cao G, Zhao X (2016) Preparation of a carbon nanofibers–carbon matrix–sulfur composite as the cathode material of lithium–sulfur batteries. RSC Adv 6:7159–7171. doi:10.1039/C5RA24129D

    Article  CAS  Google Scholar 

  • Yun S, Kim J (2010) Multi-walled carbon nanotubes–cellulose paper for a chemical vapor sensor. Sens Actuators B Chem 150:308–313. doi:10.1016/j.snb.2010.06.068

    Article  CAS  Google Scholar 

  • Yun S, Kim J (2011) Mechanical, electrical, piezoelectric and electro-active behavior of aligned multi-walled carbon nanotube/cellulose composites. Carbon 49:518–527. doi:10.1016/j.carbon.2010.09.051

    Article  CAS  Google Scholar 

  • Zhang J et al (2012) Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces 5:128–134. doi:10.1021/am302290n

    Article  Google Scholar 

  • Zhang L, Liu Z, Cui G, Chen L (2015) Biomass-derived materials for electrochemical energy storages. Prog Polym Sci 43:136–164. doi:10.1016/j.progpolymsci.2014.09.003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Subhadip Mondal is grateful to the Rajiv Gandhi National Fellowship, UGC for financially supporting this work sincerely.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan Ch. Das.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Ganguly, S., Das, P. et al. High-performance carbon nanofiber coated cellulose filter paper for electromagnetic interference shielding. Cellulose 24, 5117–5131 (2017). https://doi.org/10.1007/s10570-017-1441-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1441-4

Keywords

Navigation