Skip to main content

Advertisement

Log in

Construction of inorganic nanoparticles by micro-nano-porous structure of cellulose matrix

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In our previous work, the CdS nanoparticles/cellulose films exhibited significantly high photocatalytic H2 production efficiency under visible light irradiation than the ordinary CdS photocatalyst. In present paper, the CdS nanoparticles were synthesized in situ in pores of the regenerated cellulose substrate and the porous structure of cellulose, formation of the CdS nanoparticles and interactions between CdS and cellulose matrix in the composite films were investigated deeply. The experimental results indicated that the micro-nano-porous structure of the cellulose matrix could be used easily to create inorganic nanoparticles, which supplied not only cavities for the formation of nanoparticles, but also a shell (semi-stiff cellulose molecules support the pore wall) to protect their nano-structure. When the cellulose films with porous structure at wet state were immersed into inorganic ions solution, the ions interacted immediately with the –OH groups of cellulose, and then transformed into inorganic composite via another treatment, finally inorganic nanoparticles formed during the dry. The pore size of the cellulose matrix decreased from 180 nm (at wet state) to about 18 nm (at dry state), leading to the formation of nanoparticles. The results revealed that the CdS nanoparticles with a mean particle diameter about 6 nm were dispersed well, and were immobilized tightly in the cellulose matrix, resulting in a portable photocatalyst with high efficiency for photocatalytic for H2 evolution. This is simple and “green” pathway to prepare the organic–inorganic hybrid materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci Part B Polym Phys 44:3093–3101

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Chang C, Cheng G, Chen X, Chu B (2007a) Hydrogen-bond-induced inclusion complex in LiOH-urea aqueous solution at low temperature. Chem Phys Chem 8:1572–1579

    CAS  Google Scholar 

  • Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007b) Multi-filament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han C, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 4:9345–9351

    Article  Google Scholar 

  • Datta A, Panda SK, Chaudhuri S (2007) Synthesis and optical and electrical properties of CdS/ZnS core/shell nanorods. J Phys Chem C 111:17260–17264

    Article  CAS  Google Scholar 

  • Guan G, Kida T, Kusakabe K, Kimura K, Fang X, MaT AbeE, Yoshida A (2004) Photocatalytic H2 evolution under visible light irradiation on CdS/ETS-4 composite. Chem Phys Lett 385:319–322

    Article  CAS  Google Scholar 

  • He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15:4401–4406

    Article  CAS  Google Scholar 

  • Hengleln A, Llndlg B, Westerhausen J (1981) Photochemical electron storage on colloidal metals and hydrogen formation by free radicals. J Phys Chem 85:1627–1628

    Article  Google Scholar 

  • Huang W, Kuhn JN, Tsung CK, Zhang Y, Habas SE, Yang P, Somorjai GA (2008) Dendrimer templated synthesis of one nanometer rh and pt particles supported on mesoporous silica: catalytic activity for ethylene and pyrrole hydrogenation. Nano Lett 8:2027–2034

    Article  CAS  Google Scholar 

  • Ishikawa A, Yamada Y, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2003) Novel synthesis and photocatalytic activity of oxysulfide Sm2Ti2S2O5. Chem Mater 15:4442–4446

    Article  CAS  Google Scholar 

  • Isogai A, Usuda M, Kato T, Uryu TR, Atalla N (1989) Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 22:3168–3172

    Article  CAS  Google Scholar 

  • Jing D, Guo L (2007) Efficient hydrogen production by a composite CdS/mesoporous zirconium titanium phosphate photocatalyst under visible light. J Phys Chem C 111:13437–13441

    Article  CAS  Google Scholar 

  • Ke D, Liu S, Dai K, Zhou J, Zhang L, Peng T (2009) CdS/regenerated cellulose nanocomposite films for highly efficient photocatalytic H2 production under visible light irradiation. J Phys Chem C 113:16021–16026

    Article  CAS  Google Scholar 

  • Kim JY, Osterloh FE (2005) ZnO–CdSe nanoparticle clusters as directional photoemitters with tunable wavelength. J Am Chem Soc 127:10152–10153

    Article  CAS  Google Scholar 

  • Kim TW, Hwang SJ, Jhung SH, Chang JS, Park H, Choi W, Choy JH (2008a) Bifunctional heterogeneous catalysts for selective epoxidation and visible light driven photolysis: nickel oxide-containing porous nanocomposite. Adv Mater 20:539–542

    Article  CAS  Google Scholar 

  • Kim GM, Lee SM, Michler GH, Roggendorf H, Gösele U, Knez M (2008b) Nanostructured pure anatase titania tubes replicated from electrospun polymer fiber templates by atomic layer deposition. Chem Mater 20:3085–3091

    Article  CAS  Google Scholar 

  • Lee Y, Terasgima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, Domen K, Yashima M (2007) Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. J Phys Chem C 111:1042–1048

    Article  CAS  Google Scholar 

  • Lee YH, Chang CJ, Kao CJ, Dai CA (2010) In situ template synthesis of a polymer/semiconductor nanohybrid using amphiphilic conducting block copolymers. Langmuir 26:4196–4206

    Article  CAS  Google Scholar 

  • Li YX, Lu GX, Li SB (2001) Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2. Appl Catal A 214:179–185

    Article  CAS  Google Scholar 

  • Li YX, Lu GX, Li SB (2002) Photocatalytic transformation of rhodamine B and its effect on hydrogen evolution over Pt/TiO2 in the presence of electron donors. J Photochem Photobiol A 152:219–228

    Article  CAS  Google Scholar 

  • Liu S, Zhang L (2009) Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose 16:189–198

    Article  CAS  Google Scholar 

  • Liu S, Zhang L, Zhou J, Xiang J, Sun J, Guan J (2008) Fiberlike Fe2O3 macroporous nanomaterials fabricated by calcinating regenerate cellulose composite fibers. Chem Mater 20:3623–3628

    Article  CAS  Google Scholar 

  • Lue A, Zhang L (2008) Investigation of the scaling law on cellulose solution prepared at low temperature. J Phys Chem B 112:4488–4495

    Article  CAS  Google Scholar 

  • Ma Z, Li F, Bai H (2006) Effect of Fe2O3 in Fe2O3/AP composite particles on thermal decomposition of AP and on burning rate of the composite propellant. Prop Explos Pyrotech 31:447–451

    Article  CAS  Google Scholar 

  • Meissner D, Memming R, Kastening B (1988) Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential. J. Phys Chem 92:3476–3483

    Article  CAS  Google Scholar 

  • Ooi ZE, Tam TL, Shin RYC, Chen ZK, Kietzke T, Sellinger A, Baumgarten M, Mullen K, Demello JC (2008) Solution processable bulk-heterojunction solar cells using a small molecule acceptor. J Mater Chem 18:4619–4622

    Article  CAS  Google Scholar 

  • Peng H, Xie C, Schoen DT, Mcllwrath K, Zhang XF, Cui Y (2007) Ordered vacancy compounds and nanotube formation in CuInSe2–CdS core-shell nanowires. Nano Lett 7:3734–3738

    Article  CAS  Google Scholar 

  • Qi H, Chang C, Zhang L (2009) Properties and application of biodegradable transparent and photoluminescent cellulose films prepared with a green process. Green Chem 11:177–184

    Article  CAS  Google Scholar 

  • Rabek JF (1980) Experimental methods in polymer chemistry. Wiley, Chichester

    Google Scholar 

  • Ryu SY, Balcerski W, Lee TK, Hoffmann MR (2007) Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas. J Phys Chem C 111:18195–18203

    Article  CAS  Google Scholar 

  • Sahu N, Upadhyay SN, Sinha ASK (2009) Kinetics of reduction of water to hydrogen by visible light on alumina supported Pt–CdS photocatalysts. Int J Hydrogen Energy 34:130–137

    Article  CAS  Google Scholar 

  • Shen S, Guo L (2008) Growth of quantum-confined CdS nanoparticles inside Ti-MCM-41 as a visible light photocatalyst. Mater Res Bull 43:437–446

    Article  CAS  Google Scholar 

  • Shim LW, Choi S, Noh WT, Kwon J, Cho JY, Kim KS, Kang DH (2002) Preparation of copper nanoparticles in cellulose acetate polymer and the reaction chemistry of copper complexes in the polymer. Bull Korean Chem Soc 23:563–566

    Article  CAS  Google Scholar 

  • Sun WT, Yu Y, Pan HY, Gao XF, Chen Q, Peng LM (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130:1124–1125

    Article  CAS  Google Scholar 

  • Talapin DV, Koeppe R, Gotzinger S, Kornowski A, Lupton JM, Rogach AL, Benson O, Feldmann J, Weller H (2003) Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett 3:1677–1681

    Article  CAS  Google Scholar 

  • Xie R, Kolb U, Li J, Basche T, Mews A (2005) Synthesis and characterization of highly luminescent CdSe–core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J Am Chem Soc 127:7480–7488

    Article  CAS  Google Scholar 

  • Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176–7177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (973 Program, 2010CB732203), National Supporting Project for Science and Technology (2006BAF02A09), and the National Natural Science Foundation of China (20474048 and 20874079).The authors are grateful to Professor Liejin Guo of Xi’an Jiaotong University for his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1,860 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Ke, D., Zeng, J. et al. Construction of inorganic nanoparticles by micro-nano-porous structure of cellulose matrix. Cellulose 18, 945–956 (2011). https://doi.org/10.1007/s10570-011-9556-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9556-5

Keywords

Navigation