Skip to main content
Log in

Preparation and properties of microcrystalline cellulose/hydroxypropyl starch composite films

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this paper, microcrystalline cellulose (MCC)/hydroxypropyl starch (HPS) composite films are prepared by the solution casting method, and the effect of different amounts of microcrystalline cellulose on the properties of the films is investigated. The structure of MCC/HPS composite materials is characterized by Fourier transform infra-red and scanning election microscopy, and thermal stability, mechanical properties, hygroscopicity, and water vapor permeability of the composite films are also tested. According to the test results, with increasing MCC amounts, glass transition temperature, thermal stability, and tensile strength of MCC/HPS composite films are improved, while the hygroscopicity and water vapor permeability of MCC/HPS composite materials are decreased. When the content of MCC reaches 6 wt%, the maximum increase of the glass transition temperature is about 9.63 °C, and the tensile strength of MCC/HPS composite films are increased by 300% compared with that of HPS films. Moreover, the addition of MCC helps to expand the application of hydroxypropyl starch in the packaging field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alhuthali A, Low IM, Dong C (2012) Characterisation of the water absorption, mechanical and thermal properties of recycled cellulose fibre reinforced vinyl-ester eco-nanocomposites. Compos Part B Eng 43:2772–2781

    Article  CAS  Google Scholar 

  • Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677

    Article  CAS  Google Scholar 

  • Bakrudeen HB, Sudarvizhi C, Reddy BSR (2016) Starch nanocrystals based hydrogel: construction, characterizations and transdermal application. Mat Sci Eng C Mater 68:880–889

    Article  CAS  Google Scholar 

  • Bergo PVA, Carvalho RA, Sobral PJA, dos Santos RMC, da Silva FBR, Prison JM, Solorza-Feria J, Habitante AMQB (2008) Physical properties of edible films based on cassava starch as affected by the plasticizer concentration. Packag Technol Sci 21:85–89

    Article  CAS  Google Scholar 

  • Brandelero RPH, Yamashita F, Grossmann MVE (2010) The effect of surfactant Tween 80 on the hydrophilicity, water vapor permeation, and the mechanical properties of cassava starch and poly(butylene adipate-co-terephthalate) (PBAT) blend films. Carbohydr Polym 82:1102–1109

    Article  CAS  Google Scholar 

  • Brandelero RPH, Yamashita F, Zanela J, Brandelero EM, Caetano JG (2015) Mixture design applied to evaluating the effects of polyvinyl alcohol (PVOH) and alginate on the properties of starch-based films. Starch-Starke 67:191–199

    Article  CAS  Google Scholar 

  • Brandelero RPH, Brandelero EM, de Almeida FM (2016) Biodegradable films of starch/PVOH/alginate in packaging systems for minimally processed lettuce (Lactuca sativa L.). Cienc Agrotech 40:510–521

    Article  Google Scholar 

  • Brannan RG, Mah E, Schott M, Yuan SM, Casher KL, Myers A, Herrick C (2014) Influence of ingredients that reduce oil absorption during immersion frying of battered and breaded foods. Eur J Lipid Sci Technol 116:240–254

    Article  CAS  Google Scholar 

  • Cervantes-Sanchez JJ, Rico-Martinez JM, Perez-Munoz VH (2016) Angularity and axiality of a Schonflies parallel manipulator. Robotica 34:2415–2439

    Article  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromol 8:1–12

    Article  CAS  Google Scholar 

  • Dai L, Long Z, Chen J, An X, Cheng D, Khan A, Ni Y (2017) Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties. ACS Appl Mater Interfaces 9:5477–5485

    Article  CAS  Google Scholar 

  • Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31:2693–2696

    Article  CAS  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76:2080–2092

    Article  CAS  Google Scholar 

  • Edhirej A, Sapuan SM, Jawaid M, Zahari NI (2017) Effect of various plasticizers and concentration on the physical, thermal, mechanical, and structural properties of cassava-starch-based films. Starch-Starke 69(1–2)

  • Fouladi E, Nafchi AM (2014) Effects of acid-hydrolysis and hydroxypropylation on functional properties of sago starch. Int J Biol Macromol 68:251–257

    Article  CAS  Google Scholar 

  • Frone AN, Nicolae CA, Gabor RA, Panaitescu DM (2015) Thermal properties of water-resistant starch–polyvinyl alcohol films modified with cellulose nanofibers. Polym Degrad Stab 121:385–397

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93:172–177

    Article  CAS  Google Scholar 

  • Guz L, Fama L, Candal R, Goyanes S (2017) Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites. Carbohydr Polym 157:1611–1619

    Article  CAS  Google Scholar 

  • Ismail H, Zaaba NF (2014) Effects of poly(vinyl alcohol) on the performance of sago starch plastic films. J Vinyl Addit Technol 20:72–79

    Article  CAS  Google Scholar 

  • Jang WY, Shin BY, Lee TX, Narayan R (2007) Thermal properties and morphology of biodegradable PLA/starch compatibilized blends. J Ind Eng Chem 13:457–464

    CAS  Google Scholar 

  • Kaushik A, Kaur R (2016) Thermoplastic starch nanocomposites reinforced with cellulose nanocrystals: effect of plasticizer on properties. Compos Interface 23:701–717

    Article  CAS  Google Scholar 

  • Lani NS, Ngadi N, Johari A, Jusoh M (2014) Isolation, characterization, and application of nanocellulose from oil palm empty fruit bunch fiber as nanocomposites. J Nanomater 2014:1687–4110

    Article  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  Google Scholar 

  • Lawal OS (2011) Hydroxypropylation of pigeon pea (Cajanus cajan) starch: preparation, functional characterizations and enzymatic digestibility. LWT Food Sci Technol 44:771–778

    Article  CAS  Google Scholar 

  • Lee HL, Yoo B (2011) Effect of hydroxypropylation on physical and rheological properties of sweet potato starch. LWT Food Sci Technol 44:765–770

    Article  CAS  Google Scholar 

  • Lim KS, Bee ST, Sin LT, Tee TT, Ratnam CT, Hui D, Rahmat AR (2016) A review of application of ammonium polyphosphate as intumescent flame retardant in thermoplastic composites. Compos Part B Eng 84:155–174

    Article  CAS  Google Scholar 

  • Liu DG, Sun X, Tian HF, Maiti S, Ma ZS (2013) Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 20:2981–2989

    Article  CAS  Google Scholar 

  • Liu DG, Ma ZS, Wang ZM, Tian HF, Gu MY (2014) Biodegradable poly(vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir 30:9544–9550

    Article  CAS  Google Scholar 

  • Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos Part A: Appl Sci Manuf 39:738–746

    Article  Google Scholar 

  • Ma XF, Yu JG, Kennedy JF (2005) Studies on the properties of natural fibers-reinforced thermoplastic starch composites. Carbohydr Polym 62:19–24

    Article  CAS  Google Scholar 

  • Mondragon G, Pena-Rodriguez C, Gonzalez A, Eceiza A, Arbelaiz A (2015) Bionanocomposites based on gelatin matrix and nanocellulose. Eur Polym J 62:1–9

    Article  CAS  Google Scholar 

  • Perez-Gallardo A, Bello-Perez LA, Garcia-Almendarez B, Montejano-Gaitan G, Barbosa-Canovas G, Regalado C (2012) Effect of structural characteristics of modified waxy corn starches on rheological properties, film-forming solutions, and on water vapor permeability, solubility, and opacity of films. Starch-Starke 64:27–36

    Article  CAS  Google Scholar 

  • Rahman WAWA, Sin LT, Rahmat AR, Samad AA (2010) Thermal behaviour and interactions of cassava starch filled with glycerol plasticized polyvinyl alcohol blends. Carbohydr Polym 81:805–810

    Article  CAS  Google Scholar 

  • Ramaraj B (2006) Modified poly(vinyl alcohol) and coconut shell powder composite films: physico-mechanical, thermal properties, and swelling studies. Polym Polym Plast Technol 45:1227–1231

    Article  CAS  Google Scholar 

  • Ramesan MT, Surya K (2016) Synthesis, characterization, and properties of cashew gum graft poly(acrylamide)/magnetite nanocomposites. J Appl Polym Sci 133:43496–43503

    Google Scholar 

  • Rico M, Rodriguez-Llamazares S, Barral L, Bouza R, Montero B (2016) Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose. Carbohydr Polym 149:83–93

    Article  CAS  Google Scholar 

  • Rodionova G, Roudot S, Eriksen O, Mannle F, Gregersen O (2012) The formation and characterization of sustainable layered films incorporating microfibrillated cellulose (MFC). BioResources 7:3690–3700

    CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polym Basel 2:728–765

    CAS  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Sobral PJD, dos Santos JS, Garcia FT (2005) Effect of protein and plasticizer concentrations in film forming solutions on physical properties of edible films based on muscle proteins of a Thai Tilapia. J Food Eng 70:93–100

    Article  Google Scholar 

  • Svagan AJ, Hedenqvist MS, Berglund L (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69:500–506

    Article  CAS  Google Scholar 

  • Veigel S, Muller U, Keckes J, Obersriebnig M, Gindl-Altmutter W (2011) Cellulose nanofibrils as filler for adhesives: effect on specific fracture energy of solid wood-adhesive bonds. Cellulose 18:1227–1237

    Article  CAS  Google Scholar 

  • Yakimets I, Paes SS, Wellner N, Smith AC, Wilson RH, Mitchell JR (2007) Effect of water content on the structural reorganization and elastic properties of biopolymer films: a comparative study. Biomacromol 8:1710–1722

    Article  CAS  Google Scholar 

  • Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39:1635–1638

    Article  CAS  Google Scholar 

  • Yoon SD, Park MH, Byun HS (2012) Mechanical and water barrier properties of starch/PVA composite films by adding nano-sized poly(methyl methacrylate-co-acrylamide) particles. Carbohydr Polym 87:676–686

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (31270633), the State Key Laboratory of Pulp and Paper Engineering of China (201512), the Lianyungang 555 Talents Project Program of China (2015-13), the Hangzhou Qianjiang Distinguished Experts Programme of China, and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Long, Z., Wang, J. et al. Preparation and properties of microcrystalline cellulose/hydroxypropyl starch composite films. Cellulose 24, 4449–4459 (2017). https://doi.org/10.1007/s10570-017-1423-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1423-6

Keywords

Navigation