Skip to main content
Log in

Sorption capacity of hydrophobic cellulose cryogels silanized by two different methods

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The production of cellulose cryogels for petroleum sorption is a relevant study since cellulose is an economical, renewable, biodegradable and abundant source in the environment. However, as this material is of hydrophilic character it is necessary to modify the hydrophobicity of the cellulose fiber surfaces by using organosilanes, for example. The aim of this work is the development of hydrophobic cellulose cryogels for application in petroleum sorption. For this, was compared the sorption capacity of cryogels silanized by methyltrimethoxysilane (MTMS) through two methods: vapor deposition and addition of silane to cellulose suspension. For the samples with MTMS addition to the cellulose suspension, modifying the MTMS fiber surfaces increased the water contact angle on average by 112°. For the samples modifyed by vapor deposition the increase was of 119°. The most effective silanization method was by vapor deposition where the petroleum sorption capacity was 50% higher than by the cellulose addition method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdelmouleh M et al (2002) Interaction of silane coupling agents with cellulose. Langmuir 18:3203–3208

    Article  CAS  Google Scholar 

  • Adebajo MO et al (2003) Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J Porous Mater 10:159–170

    Article  CAS  Google Scholar 

  • Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, New York

    Book  Google Scholar 

  • ASTM (2012) F726-12: standard test methods for sorbent performance of adsorbents. ASTM, Philadelphia

    Google Scholar 

  • Cervin NT (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410

    Article  CAS  Google Scholar 

  • Chin SF, Romainor ANB, Pang SC (2014) Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity. Mater Lett 115:241–243

    Article  CAS  Google Scholar 

  • Cunha AG et al (2010) Preparation of highly hydrophobic and lipophobic cellulose fibers by a straightforward gas–solid reaction. J Colloid Interface Sci 344:588–595

    Article  CAS  Google Scholar 

  • Dave D, Ghaly AE (2011) Remediation technologies for marine oil spills: a critical review and comparative analysis. Am J Environ Sci 7:423–440

    Article  CAS  Google Scholar 

  • Du A et al (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6(3):941–968

    Article  CAS  Google Scholar 

  • Feng L (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860

    Article  CAS  Google Scholar 

  • Feng J (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175

    Article  CAS  Google Scholar 

  • Fu J et al (2016) Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Carbohydr Polym 147:89–999666

    Article  CAS  Google Scholar 

  • Ganesan K et al (2016) Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. Mater Des 92:345–355

    Article  CAS  Google Scholar 

  • Han S et al (2016) Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution. Carbohyd Polym 136:95–100

    Article  CAS  Google Scholar 

  • Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterization of nanofibrillar cellulose aerogels. Cellulose 15:121–129

    Article  CAS  Google Scholar 

  • Husing N, Schubert U (1998) Aerogels–Airy materials: chemistry, structure and properties. Angew Chem Int Ed 37:22–45

    Article  CAS  Google Scholar 

  • IBÁ Retrieved from: http://iba.org.br/. Accessed 29 Mar 2016

  • IBAMA (2015) Relatório de Acidentes Ambientais 2014. 31 f. 2015. Retrieved from: www.ibama.gov.br. Accessed 26 May 2016

  • Islam MT, Alam MM, Zoccola M (2013) Review on modification of nanocellulose for application in composites. Int J Innov Res Sci Eng Technol 2(10):5444–5451

    Google Scholar 

  • Jin C et al (2015) Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents. Carbohyd Polym 123:150–156

    Article  CAS  Google Scholar 

  • Kalia S et al (2014) Nanofibrillated cellulose: surface modification and potencial applications. Colloid Polym Sci 292:5–31

    Article  CAS  Google Scholar 

  • Khalil HPSA et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohyd Polym 99:649–665

    Article  Google Scholar 

  • Korhonen et al (2011) Hydrophobic nanocelulose aerogels as floating, sustainable, reusable and recyclable oil absorbents. Appl Mater Interfaces 3:1813–1816

    Article  CAS  Google Scholar 

  • Lee JA et al (2014) Preparation and characterization of cellulose nanofibers (CNFs) from microcrystalline cellulose (MCC) and CNF/Polyamide 6 composites. Macromol Res 22(7):738–745

    Article  CAS  Google Scholar 

  • Macedo V (2015) Desenvolvimento de compósitos expandidos poliuretânicos com fibra de celulose e pó de madeira para utilização como sorvente de óleo. 100f. 2015. Dissertação (Mestrado em Engenharia de Processos e Tecnologias)—Universidade de Caxias do Sul, Caxias do Sul

  • Miranda LS, Anjos JASA, Moreira ITA (2014) Avaliação de tecnologias de remediação em zonas costeiras impactadas pela indústria de petróleo. Revista Eletrônica de Energia 4(1):19–37

    Google Scholar 

  • Nakagaiato AN, Kondo H, Takagi H (2013) Cellulose nanofiber aerogel production and applications. J Reinf Plast Compos 32:1547–1552

    Article  Google Scholar 

  • Nguyen ST et al (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf A Physicochem Eng Asp 445:128–134

    Article  CAS  Google Scholar 

  • Peng Y et al (2013) Influence of drying method on the material properties of nanocelulose I: thermostability and crystalinity. Cellulose 20:2379–2392

    Article  CAS  Google Scholar 

  • Redondo SUA et al (2002) Eucalyptus Kraft pulp fibers as na alternative reinforcement of silicone composites. I. Characterization and chemical modification of eucalyptus fibers with organosilane coupling agent. J Appl Polym Sci 85:2573–2579

    Article  CAS  Google Scholar 

  • Sai H et al (2015) Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7:7373–7381

    Article  CAS  Google Scholar 

  • Sehaqui H (2011) Nanofiber, networs, aerogels and biocomposites based on nanofibrillated cellulose from wood., vol 82 f. Tese–KTH School of Chemical Science and Engineering, Estocolmo, p 2011

    Google Scholar 

  • Singh V et al (2013) Crude oil sorption by raw cotton. Ind Eng Chem Res 52:6277–6281

    Article  CAS  Google Scholar 

  • Song J, Rojas OJ (2013) Approaching super hydrophobicity from cellulosic materials: a review. Paper Chem 28:216–238

    CAS  Google Scholar 

  • Wu D et al (2014) Oil sorbents with high sorption capacity, oil/water selectivity and reusability for oil spill cleanup. Mar Pollut Bull 84:263–267

    Article  CAS  Google Scholar 

  • Xiao S et al (2015) Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohyd Polym 119:205–209

    Article  Google Scholar 

  • Xie Y (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A 41:806–819

    Article  Google Scholar 

  • Zanini M et al (2017) Producing aerogels from silanized cellulose nanofiber suspension. Cellulose 24:769–779

    Article  CAS  Google Scholar 

  • Zhang Z et al (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668

    Article  CAS  Google Scholar 

  • Zhang T et al (2017) Enhanced oils and organic solvents absorption by polyurethane foams composites modified with MnO2 nanowires. Chem Eng J 309:7–14

    Article  CAS  Google Scholar 

  • Zhou F, Cheng G, Jiang B (2014) Effect of silane treatment on microstructure of sisal fibers. Appl Surf Sci 292:806–812

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the University of Caxias do Sul (UCS), to the Post-Graduate Program in Process and Technology Engineering (PGEPROTEC) and to the Ministry of Labor and Employment (MTE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lídia K. Lazzari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazzari, L.K., Zampieri, V.B., Zanini, M. et al. Sorption capacity of hydrophobic cellulose cryogels silanized by two different methods. Cellulose 24, 3421–3431 (2017). https://doi.org/10.1007/s10570-017-1349-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1349-z

Keywords

Navigation