Skip to main content
Log in

Effects of liquid crystalline and shear alignment on the optical properties of cellulose nanocrystal films

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Rheo-optics, microspectrophotometry, and optical contrast measurements were used to gain new insights into the interrelated effects of liquid crystalline phase behavior, flow alignment, and microstructural relaxation on cellulose nanocrystal (CNC) films’ alignment and optical properties. Optical contrast measurements were found to be an effective and facile way of determining changes in anisotropy directly from cross-polarized microscopy images. This method was used to continuously measure microstructural relaxation after the cessation of shear as well as the anisotropy of dried CNC films. Aqueous liquid crystalline CNC dispersions showed greater alignment after shear than isotropic or biphasic dispersions. However, CNC gels exhibited lower alignment at equivalent shear rates. The combination of greater initial alignment and slower relaxation of sheared liquid crystalline dispersions resulted in the most optically anisotropic films. Depending on their thickness, the CNC films were optically transparent in the visible regime or exhibited tunable interference colors. The results of this work highlight the tunability of CNC dispersion processing for producing color filters and other optical materials with controlled properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20(2):785–794

    Article  CAS  Google Scholar 

  • Ao G, Nepal D, Aono M, Davis VA (2011) Cholesteric and nematic liquid crystalline phase behavior of double-stranded DNA stabilized single-walled carbon nanotube dispersions. ACS Nano 5(2):1450–1458

    Article  CAS  Google Scholar 

  • Beck S, Bouchard J, Chauve G, Berry R (2013) Controlled production of patterns in iridescent solid films of cellulose nanocrystals. Cellulose 20(3):1401–1411

    Article  CAS  Google Scholar 

  • Beck S, Méthot M, Bouchard J (2015) General procedure for determining cellulose nanocrystal sulfate half-ester content by conductometric titration. Cellulose 22(1):101–116

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054

    Article  CAS  Google Scholar 

  • Davis VA (2011) Liquid crystalline assembly of nanocylinders. J Mater Res 26(02):140–153

    Article  CAS  Google Scholar 

  • Davis VA, Parra-Vasquez ANG, Green MJ, Rai PK, Behabtu N, Prieto V, Booker RD, Schmidt J, Kesselman E, Zhou W (2009) True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol 4(12):830–834

    Article  CAS  Google Scholar 

  • Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32

    Article  CAS  Google Scholar 

  • Duggal R, Hussain F, Pasquali M (2006) Self-assembly of single-walled carbon nanotubes into a sheet by drop drying. Adv Mater 18(1):29–34

    Article  CAS  Google Scholar 

  • Geng Y, Almeida PL, Feio GM, Figueirinhas JL, Godinho MH (2013) Water-based cellulose liquid crystal system investigated by Rheo-NMR. Macromolecules 46(11):4296–4302

    Article  CAS  Google Scholar 

  • Green MJ, Parra-Vasquez ANG, Behabtu N, Pasquali M (2009) Modeling the phase behavior of polydisperse rigid rods with attractive interactions with applications to single-walled carbon nanotubes in superacids. J Chem Phys 131(8):041401

    Article  Google Scholar 

  • Henrique MA, Silvério HA, Flauzino Neto WP, Pasquini D (2013) Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J Environ Manag 121:202–209

    Article  CAS  Google Scholar 

  • Hoeger I, Rojas OJ, Efimenko K, Velev OD, Kelley SS (2011) Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties. Soft Matter 7(5):1957–1967

    Article  CAS  Google Scholar 

  • Huang Y, Duan X, Wei Q, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504):630–633

    Article  CAS  Google Scholar 

  • Kim J, Peretti J, Lahlil K, Boilot JP, Gacoin T (2013) Optically anisotropic thin films by shear-oriented assembly of colloidal nanorods. Adv Mater 25(24):3295–3300

    Article  CAS  Google Scholar 

  • Kiss G (1979) Rheology and rheo-optics of concentrated solutions of helical polypeptides. UMass Amherst, Amherst

    Google Scholar 

  • Kiss G, Orrell T, Porter RS (1979) Rheology and rheo-optics of anisotropic poly-β-benzyl-aspartate gel. Rheol Acta 18(5):657–661

    Article  CAS  Google Scholar 

  • Lagerwall JP, Schütz C, Salajkova M, Noh J, Park JH, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6(1):e80

    Article  CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids, vol 33. Oxford University Press, New York

    Google Scholar 

  • Lavrentovich O, Kleman M (2001) Cholesteric liquid crystals: defects and topology. In: Kitzerow HS, Bahr C (eds) Chirality in liquid crystals. Springer, New York, pp 115–158

  • Li J, Revol JF, Marchessault RH (1996) Rheological properties of aqueous suspensions of chitin crystallites. J Colloid Interface Sci 183(2):365–373

    Article  CAS  Google Scholar 

  • Li M-C, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3(5):821–832

    Article  CAS  Google Scholar 

  • Liu J-W, Liang H-W, Yu S-H (2012) Macroscopic-scale assembled nanowire thin films and their functionalities. Chem Rev 112(8):4770–4799

    Article  CAS  Google Scholar 

  • Luo Z, Song H, Feng X, Run M, Cui H, Wu L, Gao J, Wang Z (2013) Liquid crystalline phase behavior and sol–gel transition in aqueous halloysite nanotube dispersions. Langmuir 29(40):12358–12366

    Article  CAS  Google Scholar 

  • Marrucci G (1991) Rheology of Nematic Polymers. In: Ciferri A (ed) Liquid crystallinity in polymers: principles and fundamental properties. VCH Publishers, New York, pp 395–422

    Google Scholar 

  • Michel-Lévy M, Lacroix A (1888) Minéralogie sur nouveau gisemant de dumortiérite. CR Acad Sci Paris 106:1546–1548

    Google Scholar 

  • Montesi A, Peña AA, Pasquali M (2004) Vorticity alignment and negative normal stresses in sheared attractive emulsions. Phys Rev Lett 92(5):058303

    Article  Google Scholar 

  • Mu X, Gray DG (2015) Droplets of cellulose nanocrystal suspensions on drying give iridescent 3-D “coffee-stain” rings. Cellulose 22(2):1103–1107

    Article  CAS  Google Scholar 

  • Nepal D, Balasubramanian S, Simonian AL, Davis VA (2008) Strong antimicrobial coatings: single-walled carbon nanotubes armored with biopolymers. Nano Lett 8(7):1896–1901

    Article  CAS  Google Scholar 

  • Onogi S, Asada T (1980) Rheology and rheo-optics of polymer liquid crystals. In: Astarita G, Marrucci G, Nicolais L (eds) Rheology Vol 1: Principles. Springer, New York, pp 127–147

  • Onogi Y, White JL, Fellers JF (1980) Rheo-optics of shear and elongational flow of liquid cystalline polymer solutions: hydroxypropyl cellulose/water and poly-p-phenylene terephthalamide/sulfuric acid. J Non-Newtonian Fluid Mech 7(2–3):121–151

    Article  CAS  Google Scholar 

  • Orts W, Godbout L, Marchessault R, Revol J-F (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31(17):5717–5725

    Article  CAS  Google Scholar 

  • Pan J, Hamad W, Straus SK (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43(8):3851–3858

    Article  CAS  Google Scholar 

  • Park JH, Noh J, Schütz C, Salazar-Alvarez G, Scalia G, Bergström L, Lagerwall JP (2014) Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions. ChemPhysChem 15(7):1477–1484

    Article  CAS  Google Scholar 

  • Reising AB, Moon RJ, Youngblood JP (2013) Effect of particle alignment on mechanical properties of neat cellulose nanocrystal films. J Sci Technol For Prod Process 2:32–41

    Google Scholar 

  • Revol J-F, Bradford H, Giasson J, Marchessault R, Gray D (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172

    Article  CAS  Google Scholar 

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28(49):17124–17133

    Article  CAS  Google Scholar 

  • Singh KB, Bhosale LR, Tirumkudulu MS (2009) Cracking in drying colloidal films of flocculated dispersions. Langmuir 25(8):4284–4287

    Article  CAS  Google Scholar 

  • Stroobants A, Lekkerkerker HNW, Odijk T (1986) Effect of electrostatic interaction on the liquid-crystal phase-transition in solutions of rodlike polyelectrolytes. Macromolecules 19(8):2232–2238

    Article  CAS  Google Scholar 

  • Urena-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44(22):8990–8998

    Article  CAS  Google Scholar 

  • Walker L, Wagner N (1994) Rheology of region I flow in a lyotropic liquid-crystal polymer: the effects of defect texture. J Rheol 38(5):1525–1547

    Article  CAS  Google Scholar 

  • Wu Q, Meng Y, Wang S, Li Y, Fu S, Ma L, Harper D (2014) Rheological behavior of cellulose nanocrystal suspension: influence of concentration and aspect ratio. J Appl Polym Sci 131(15):4525(1)–4525(8)

    Google Scholar 

  • Xu T, Davis VA (2014) Liquid crystalline phase behavior of silica nanorods in dimethyl sulfoxide and water. Langmuir 30(16):4806–4813

    Article  CAS  Google Scholar 

  • Zhang Z, Wu Q, Song K, Ren S, Lei T, Zhang Q (2015) Using cellulose nanocrystals as a sustainable additive to enhance hydrophilicity, mechanical and thermal properties of poly(vinylidene fluoride)/poly(methyl methacrylate) blend. ACS Sustain Chem Eng 3(4):574–582

    Article  CAS  Google Scholar 

  • Zugenmaier P (2008) Cellulose crystalline cellulose and derivatives: characterization and structures. Springer, Berlin, pp 101–174

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the National Science Foundation Grants CMMI-1131633 and DGE-1069004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia A. Davis.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 92559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haywood, A.D., Davis, V.A. Effects of liquid crystalline and shear alignment on the optical properties of cellulose nanocrystal films. Cellulose 24, 705–716 (2017). https://doi.org/10.1007/s10570-016-1150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1150-4

Keywords

Navigation