Skip to main content

Advertisement

Log in

Assessing dilute acid pretreatment of different lignocellulosic biomasses for enhanced sugar production

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

An Erratum to this article was published on 12 June 2017

Abstract

In this study, dilute acid pretreatment of five biomass feedstocks viz., sugarcane trash, sugarcane bagasse, rice straw, corn stover and palm empty fruit bunch were compared at a given combined severity factor (CSF) range of 1.4–3.2 and were characterised using an alternative Simons’ staining dye—Direct Yellow 11 fraction (DY 11, molecular weight >100,000) to better understand the correlations of pretreatment effectiveness with biomass physicochemical properties and pretreatment conditions. Good polynomial correlations (n = 2) of CSF were obtained with hemicellulose removal, cellulose digestibility and glucose yield resulting in R2 > 0.95. The results show that the total contents of extractives and ash have negative impacts on dilute acid pretreatment. Simons’ staining results show that DY 11 can also be used to estimate cellulose accessibility to cellulase enzymes. Good linear correlations of maximum adsorption capacity of DY 11 with CSF (R2 = 0.87–0.99) and cellulose digestibility (R2 = 0.91–0.99) were observed for most of the pretreated biomass samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agbagla-Dohnani A, Noziere P, Gaillard-Martinie B, Puard M, Doreau M (2003) Effect of silica content on rice straw ruminal degradation. J Agric Sci 140:183–192

    Article  CAS  Google Scholar 

  • Ahmed IN, Sutanto S, Huynh LH, Ismadji S, Ju YH (2013) Subcritical water and dilute acid pretreatments for bioethanol production from Melaleuca leucadendron shedding bark. Biochem Eng J 78:44–52

    Article  CAS  Google Scholar 

  • Akpinar O, Levent O, Sabanci S, Uysal RS, Sapci B (2011) Optimization and comparison of dilute acid pretreatment of selected agricultural residues for recovery of xylose. BioRes 6:4103–4116

    CAS  Google Scholar 

  • Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  Google Scholar 

  • Amarasekara AS, Wiredu B (2012) A comparison of dilute aqueous p-toluenesulfonic and sulfuric acid pretreatments and saccharification of corn stover at moderate temperatures and pressures. Bioresour Technol 125:114–118

    Article  CAS  Google Scholar 

  • Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuel 4:3

    Article  CAS  Google Scholar 

  • Baadhe RR, Potumarthi R, Mekala NK (2014) Influence of dilute acid and alkali pretreatment on reducing sugar production from corncobs by crude enzymatic method: a comparative study. Bioresour Technol 162:213–217

    Article  CAS  Google Scholar 

  • Banerji A, Balakrishnan M, Kishore VVN (2013) Low severity dilute-acid hydrolysis of sweet sorghum bagasse. Appl Energy 104:197–206

    Article  CAS  Google Scholar 

  • Chandra RP, Saddler JN (2012) Use of the Simons’ Staining technique to assess cellulose accessibility in pretreated substrates. Ind Biotechnol 8:230–237

    Article  CAS  Google Scholar 

  • Chandra R, Ewanick S, Hsieh C, Saddler JN (2008) The characterization of pretreated lignocellulosic substrates prior to enzymatic hydrolysis, part 1: a modified Simons’ staining technique. Biotechnol Prog 24:1178–1185

    Article  CAS  Google Scholar 

  • Chandra RP, Arantes V, Saddler J (2015) Steam pretreatment of agricultural residues facilitates hemicellulose recovery while enhancing enzyme accessibility to cellulose. Bioresour Technol 185:302–307

    Article  CAS  Google Scholar 

  • Chen SF, Mowery RA, Scarlata CJ, Chambliss CK (2007) Compositional analysis of water-soluble materials in corn stover. J Agric Food Chem 55:5912–5918

    Article  CAS  Google Scholar 

  • Chiesa S, Gnansounou E (2014) Use of empty fruit bunches from the oil palm for bioethanol production: a thorough comparison between dilute acid and dilute alkali pretreatment. Bioresour Technol 159:355–364

    Article  CAS  Google Scholar 

  • Del Rio LF, Chandra RP, Saddler JN (2010) The effect of varying organosolv pretreatment chemicals on the physicochemical properties and cellulolytic hydrolysis of mountain pine beetle-killed Lodgepole pine. Appl Biochem Biotechnol 161:1–21

    Article  Google Scholar 

  • Esteghlalian AR, Bilodeau M, Mansfield SD, Saddler JN (2001) Do enzymatic hydrolyzability and Simons’ stain reflect the changes in the accessibility of lignocellulosic substrates to cellulase enzymes? Biotechnol Prog 17:1049–1054

    Article  CAS  Google Scholar 

  • Gao DH, Chundawat SPS, Uppugundla N, Balan V, Dale BE (2011) Binding characteristics of Trichoderma reesei cellulases on untreated, ammonia fiber expansion (AFEX), and dilute-acid pretreated Lignocellulosic biomass. Biotechnol Bioeng 108:1788–1800

    Article  CAS  Google Scholar 

  • Gao XD, Kumar R, Singh S, Simmons BA, Balan V, Dale BE, Wyman CE (2014) Comparison of enzymatic reactivity of corn stover solids prepared by dilute acid, AFEX (TM), and ionic liquid pretreatments. Biotechnol Biofuel 7:71

    Article  Google Scholar 

  • Jensen JR, Morinelly JE, Gossen KR, Brodeur-Campbell MJ, Shonnard DR (2010) Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass. Bioresour Technol 101:2317–2325

    Article  CAS  Google Scholar 

  • Karcher MA, Iqbal Y, Lewandowski I, Senn T (2015) Comparing the performance of Miscanthus × giganteus and wheat straw biomass in sulfuric acid based pretreatment. Bioresour Technol 180:360–364

    Article  CAS  Google Scholar 

  • Kim JS, Choi WI, Kang M, Park JY, Lee JS (2012) Kinetic study of empty fruit bunch using hot liquid water and dilute acid. Appl Biochem Biotech 167:1527–1539

    Article  CAS  Google Scholar 

  • Koo BW, Treasure TH, Jameel H, Phillips RB, Chang HM, Park S (2011) Reduction of enzyme dosage by oxygen delignification and mechanical refining for enzymatic hydrolysis of green liquor-pretreated hardwood. Appl Biochem Biotech 165:832–844

    Article  CAS  Google Scholar 

  • Kumar R, Hu F, Sannigrahi P, Jung S, Ragauskas AJ, Wyman CE (2013) Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnol Bioeng 110:737–753

    Article  CAS  Google Scholar 

  • Lamsal BP, Madl R, Tsakpunidis K (2011) Comparison of feedstock pretreatment performance and its effect on soluble sugar availability. Bioenergy Res 4:193–200

    Article  Google Scholar 

  • Leu SY, Zhu JY (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenergy Res 6:405–415

    Article  CAS  Google Scholar 

  • Li ZQ, Jiang ZH, Fei BH, Cai ZY, Pan XJ (2014) Comparison of bamboo green, timber and yellow in sulfite, sulfuric acid and sodium hydroxide pretreatments for enzymatic saccharification. Bioresour Technol 151:91–99

    Article  CAS  Google Scholar 

  • Li Z, Yu Y, Sun J, Li D, Huang Y, Feng Y (2016) Effct of exractives on deigestibility of cellulose in corn stover with liquid hot water pretreatment. BioRes 11:54–70

    CAS  Google Scholar 

  • McIntosh S, Vancov T, Palmer J, Spain M (2012) Ethanol production from Eucalyptus plantation thinnings. Bioresour Technol 110:264–272

    Article  CAS  Google Scholar 

  • Meng XZ, Ragauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol 27:150–158

    Article  CAS  Google Scholar 

  • Meng XZ, Foston M, Leisen J, DeMartini J, Wyman CE, Ragauskas AJ (2013) Determination of porosity of lignocellulosic biomass before and after pretreatment by using Simons’ stain and NMR techniques. Bioresour Technol 144:467–476

    Article  CAS  Google Scholar 

  • Meng XZ, Wells T, Sun QN, Huang F, Ragauskas A (2015) Insights into the effect of dilute acid, hot water or alkaline pretreatment on the cellulose accessible surface area and the overall porosity of Populus. Green Chem 17:4239–4246

    Article  CAS  Google Scholar 

  • Min DY, Li QZ, Jameel H, Chiang V, Chang HM (2011) Comparison of pretreatment protocols for cellulase-mediated saccharification of wood derived from transgenic low-xylan lines of cottonwood (P. trichocarpa). Biomass Bioenergy 35:3514–3521

    Article  CAS  Google Scholar 

  • Morinelly JE, Jensen JR, Browne M, Co TB, Shonnard DR (2009) Kinetic characterization of xylose monomer and oligomer concentrations during dilute acid pretreatment of lignocellulosic biomass from forests and switchgrass. Ind Eng Chem Res 48:9877–9884

    Article  CAS  Google Scholar 

  • Panagiotopoulos IA, Bakker RR, de Vrije T, Koukios EG (2011) Effect of pretreatment severity on the conversion of barley straw to fermentable substrates and the release of inhibitory compounds. Bioresour Technol 102:11204–11211

    Article  CAS  Google Scholar 

  • Pappas IA, Koukoura Z, Tananaki C, Goulas C (2014) Effect of dilute acid pretreatment severity on the bioconversion efficiency of Phalaris aquatica L. lignocellulosic biomass into fermentable sugars. Bioresour Technol 166:395–402

    Article  CAS  Google Scholar 

  • Pedersen M, Meyer AS (2010) Lignocellulose pretreatment severity—relating pH to biomatrix opening. New Biotechnol 27:739–750

    Article  CAS  Google Scholar 

  • Preeti VE et al (2012) An evaluation of chemical pretreatment methods for improving enzymatic saccharification of chili postharvest residue. Appl Biochem Biotech 167:1489–1500

    Article  CAS  Google Scholar 

  • Rollin JA, Zhu ZG, Sathitsuksanoh N, Zhang YHP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30

    Article  CAS  Google Scholar 

  • Scordia D, Cosentino SL, Jeffries TW (2013) Effectiveness of dilute oxalic acid pretreatment of Miscanthus × giganteus biomass for ethanol production. Biomass Bioenerg 59:540–548

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory Battelle, USA

  • Song ZL, Yang GH, Liu XF, Yan ZY, Yuan YX, Liao YZ (2014) Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion. PLoS One 9:e66845

    Google Scholar 

  • Sun QN et al (2014) Comparison of changes in cellulose ultrastructure during different pretreatments of poplar. Cellulose 21:2419–2431

    Article  CAS  Google Scholar 

  • Tanaka M, Ikesaka M, Matsuno R, Converse AO (1988) Effect of pore-size in substrate and diffusion of enzyme on hydrolysis of cellulosic materials with cellulases. Biotechnol Bioeng 32:698–706

    Article  CAS  Google Scholar 

  • Torget R, Werdene P, Himmel M, Grohmann K (1990) Dilute acid pretreatment of short rotation woody and herbaceous crops. Appl Biochem Biotechnol 24–5:115–126

    Article  Google Scholar 

  • Torget R, Walter P, Himmel M, Grohmann K (1991) Dilute-acid pretreatment of corn residues and short-rotation woody crops. Appl Biochem Biotechnol 28–29:75–86

    Article  Google Scholar 

  • Um BH, van Walsum GP (2012) Effect of pretreatment severity on accumulation of major degradation products from dilute acid pretreated corn stover and subsequent inhibition of enzymatic hydrolysis of cellulose. Appl Biochem Biotech 168:406–420

    Article  CAS  Google Scholar 

  • Uppugundla N et al (2014) A comparative study of ethanol production using dilute acid, ionic liquid and AFEX (TM) pretreated corn stover. Biotechnol Biofuel 7:72

    Article  Google Scholar 

  • Vera RM, Bura R, Gustafson R (2015) Synergistic effects of mixing hybrid poplar and wheat straw biomass for bioconversion processes. Biotechnol Biofuel 8:226

    Article  Google Scholar 

  • Wang QQ, He Z, Zhu Z, Zhang YHP, Ni Y, Luo XL, Zhu JY (2012) Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnol Bioeng 109:381–389

    Article  CAS  Google Scholar 

  • Wang W et al (2014) Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 1: chemical and physical substrate analysis. Biotechnol Biofuel 7:57

    Article  Google Scholar 

  • Xin DL, Yang Z, Liu F, Xu XR, Zhang JH (2015) Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: structure properties and enzymatic hydrolysis. Bioresour Technol 175:529–536

    Article  CAS  Google Scholar 

  • Yeh TF, Chang MJ, Chang WJ (2014) Comparison of dilute acid and sulfite pretreatments on Acacia confusa for biofuel application and the influence of its extractives. J Agric Food Chem 62:10768–10775

    Article  CAS  Google Scholar 

  • Yoon LW, Ngoh GC, Chua ASM, Hashim MA (2011) Comparison of ionic liquid, acid and alkali pretreatments for sugarcane bagasse enzymatic saccharification. J Chem Technol Biotechnol 86:1342–1348

    Article  CAS  Google Scholar 

  • Yu XC, Atalla RH (1998) A staining technique for evaluating the pore structure variations of microcrystalline cellulose powders. Powder Technol 98:135–138

    Article  CAS  Google Scholar 

  • Yu XC, Minor JL, Atalla RH (1995) Mechanism of action of Simons Stain. Tappi J 78:175–180

    CAS  Google Scholar 

  • Yu Q et al (2013) Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes. Bioresour Technol 129:592–598

    Article  CAS  Google Scholar 

  • Zhang Z, Moghaddam L, O’Hara IM, Doherty WOS (2011) Congo Red adsorption by ball-milled sugarcane bagasse. Chem Eng J 178:122–128

    Article  CAS  Google Scholar 

  • Zhang C, Lei XC, Scott CT, Zhu JY, Li KC (2014) Comparison of dilute acid and sulfite pretreatment for enzymatic saccharification of earlywood and latewood of Douglas fir. Bioenergy Res 7:362–370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the funding support from Australia-India Science Research Fund (AISRF) for this study. The authors also appreciate Ms Wanda Stolz’s efforts in biomass compositional analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanying Zhang.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10570-017-1365-z.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Vancov, T., Mackintosh, S. et al. Assessing dilute acid pretreatment of different lignocellulosic biomasses for enhanced sugar production. Cellulose 23, 3771–3783 (2016). https://doi.org/10.1007/s10570-016-1043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1043-6

Keywords

Navigation